Project description:P. aeruginosa PAO1 PA2663-UW expression in biofilm cells relative to P. aeruginosa PAO1 WT-UW expression in biofilm cells. All samples cultured in LB with glass wool. Keywords: Mutation
Project description:Pseudomonas aeruginosa PAO1 contacted with and without poplar roots gene expression Poplar contacted with and without PAO1 gene expression. All samples cultured in 1 x hrp + 0.25 % sucrose Experiment Overall Design: Strains: P. aeruginosa PAO1 WT Experiment Overall Design: Medium: 1 x hrp + 0.25 % sucrose Experiment Overall Design: Biofilm grown on poplar root compared to biofilm grown on glasswool Experiment Overall Design: Poplar roots grown
Project description:P. aeruginosa PAO1 wild type and PA2663 mutant strains expression in biofilm cells relative to P. aeruginosa PAO1 wild type strain expression in biofilm cells. All samples cultured in LB with glass wool Keywords: Biofilm
Project description:Biofilms are ubiquitous in natural, medical, and engineering environments. While most antibiotics that primarily aim to inhibit cell growth may result in bacterial drug resistance, biofilm inhibitors do not affect cell growth and there is less chance of developing resistance. This work sought to identify novel, non-toxic and potent biofilm inhibitors from Streptomyces bacteria for reducing the biofilm formation of Pseudomonas aeruginosa PAO1. Out of 4300 Streptomyces strains, one species produced and secreted peptide(s) to inhibit P. aeruginosa biofilm formation by 93% without affecting the growth of planktonic cells. Global transcriptome analyses (DNA microarray) revealed that the supernatant of the Streptomyces 230 strain induced phenazine, pyoverdine, and pyochelin synthesis genes. Electron microscopy showed that the supernatant of Streptomyces 230 strain reduced the production of polymeric matrix in P. aeruginosa biofilm cells, while the Streptomyces species enhanced swarming motility of P. aeruginosa. Therefore, current study suggests that Streptomyces bacteria are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Biofilm formation by Pseudomonas aeruginosa relies on specific changes in gene expression. Some of these genes, for instance, control antibiotic resistance. We used microarrays to detail the global programme of gene expression underlying biofilm formation and identified distinct classes of up-regulated genes during this process. Pseudomonas aeruginosa PAO1 cells were grown as planktonic cells in LB broth for 4 hours (PC4) or 24 hours (PC24) and sessile cels for 24 hours.
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:ClpV3 is a cytoplasmic AAA+ ATPase protein and is an essential component of H3-T6SS in Pseudomonas aeruginosa. Here, we report that an H3-T6SS deletion mutant PAO1(ΔclpV3) significantly affected the virulence-related phenotypes including pyocyanin production, biofilm formation, proteolytic activity and motilities. Most interestingly, the expression of T3SS genes was markedly affected, indicating a strong link between H3-T6SS and T3SS. RNA-Sequencing was performed to globally identify the genes differentially expressed when H3-T6SS was inactivated and the results obtained could be well correlated to the observed phenotypes.