Project description:ra04-07_pgpr - trancriptional response to 3 rhizobacteria - Experiment 1 : Which genes are up- or down-regulated in Arabidopsis thaliana cultivated in vitro with increased lateral root development in response to Phyllobacterium STM196 inoculation. Experiment 2 : Which genes are up- or down-regulated during the ISR triggered by a rhizobacteria, in comparison with those affected by a pathogenic interaction. Experiment 3 : which genes are specifically induced or repressed in Arabidopsis thaliana by inoculation of the soil with a PGPR vs a bacteria that has the ability to trigger nodule formation in a Legume. - Seeds of wild-type Arabidopsis thaliana (ecotype Columbia) were surface-sterilized and sawn on agar mineral medium. Four days after storage in the dark at 4degreeC, seedlings were cultivated 6 days in a growth chamber (16 h daily, 20-22degreeC) and then transferred on soil inoculated or not with 108 cfu.g-1 of Mesorhizobium loti, or 108 cfu.g-1 of Phyllobacterium STM196, or 107 cfu.g-1 of Bradyrhizobium ORS278. Keywords: treated vs untreated comparison
Project description:Arabidopsis thaliana 4-day-old seedlings were treated with the plant growth promoting rhizobacteria Caulobacter RHG1 or the neutral bacteria Bacillus sp. At 12 and 48 hours after treatment, roots were harvested, RNA was extracted and RNA-Seq data were generated. The goal of this experiment was to detect changes at the transcript level that were specific for the plant growth promoting rhizobacteria RHG1.
Project description:Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Transcriptional profiles were determined by microarray analysis (Affymetrix ATH1 Genome Array) in Arabidopsis thaliana plants inoculated with the PGPR bacterial model Burkholderia phytofirmans PsJN
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with safranal, highlighting to the physiological function of plant volatile chemicals by observing early response of gene expressions in Arabidopsis seedlings.
Project description:Plants have developed a complicated resistance system, and they exhibit various defense patterns in response to different attackers. However, the determine factors of plant defense patterns are still not clear. Here, we hypothesized that damage patterns of plant attackers play an important role in determining the plant defense patterns. To test this hypothesis, we selected leafminer, which has a special feeding pattern more similar to pathogen damage than chewing insects, as our model insect, and Arabidopsis thaliana as the response plants. The local and systemic responses of Arabidopsis thaliana to leafminer feeding were investigated using the Affymetrix ATH1 genome array.
Project description:The goal of this project is to compare the primary metabolite profile in different tissue types of the model plant Arabidopsis thaliana. Specifically, plants were grown hydroponically under the long-day (16hr light/day) condition at 21C. Tissue samples, including leaves, inflorescences, and roots were harvest 4 1/2 weeks post sowing. Untargeted primary metabolites profiling was carried out using GCTOF.
Project description:Volatiles of certain rhizobacteria can cause growth inhibitory effects on plants/ Arabidopsis thaliana. How these effects are initiated and which mechanisms are enrolled is not yet understood. Obviously the plant can survive/live with the bacteria in the soil, which suggest the existance of a regulatory mechanism/network that provide the possibility for coexistance with the bacteria. To shed light on this regulatory mechanism/network we performed a microarray anlaysis of Arabidopsis thaliana co-cultivated with two different rhizobacteria strains. In this study we used the ATH1 GeneChip microarray to investigate the transcriptional response of 4 to 5 days old Arabidopsis thaliana seedlings at 6 h, 12 h and 24 h exposure to volatiles of the rhizobacteria Serratia plymuthica HRO-C48 or Stenotrophomonas maltophilia R3089.
Project description:Plants have developed a complicated resistance system, and they exhibit various defense patterns in response to different attackers. However, the determine factors of plant defense patterns are still not clear. Here, we hypothesized that damage patterns of plant attackers play an important role in determining the plant defense patterns. To test this hypothesis, we selected leafminer, which has a special feeding pattern more similar to pathogen damage than chewing insects, as our model insect, and Arabidopsis thaliana as the response plants. The local and systemic responses of Arabidopsis thaliana to leafminer feeding were investigated using the Affymetrix ATH1 genome array. Damaged leaves of Arabidopsis thaliana for local damage analysis and the intact leaves on the same plant for systemic damage analysis were separately frozen by liquid nitrogen. Then, we used an Affymetrix ATH1 Arabidopsis microarray to study the expression changes pattern of Arabidopsis thaliana to pea leafminers damage, both locally (LI) and systemically (SI). We downloaded data from the web database and used hierarchical clustering to explore the relationships of Arabidopsis thaliana expression pattern to different kinds of attackers.
Project description:Transcriptional profiling of Arabidopsis thaliana seedlings treated with trans-2-hexenal, highlighting to the physiological function of plant volatile chemicals by observing early response of gene expressions in Arabidopsis seedlings.