Project description:The intent was to study, from transcriptome analysis, shade and drought responses in Solanum tuberosum (potato). We performed Illumina 50 bp single-end RNA-seq in tissues of control and treated var. Spunta wild-type plants. Drought experiments also included two independent AtBBX21-overexpressing (BBX21-OE) potato lines.
Project description:Potato leaves From Solanum tuberosum var. Kennebec will be wounded and oral secretions from 4th instar CPB will be isolated and added to the plants as described by Kruzmane et al (2002, Physiol. Plantarum 115:577-584). The leaf from the 6th node of the potato plant will be wounded or wounded and treated with oral secretions from CPB. Unwounded leaves from node 1-5 of the wounded and wounded plus oral secretions plants will be harvested as systemic material. The leaves will be harvested after 4 hrs and RNA will be isolated. 4 hrs was chosen because this represents a time when early and late induced genes should both be present. In addition, the leaf from the 6th node will be subjected to feeding by CPB that have been raised on potato leaves and starved for 16 hrs immediately prior to infestation. Insects will be allowed to feed for 1 hr and the leaves will be harvested after 3 additional hrs. An additional set of plants will be used to infest the leaf on the 6th node for 4 hrs. Leaves from the 6th node will be collected from uninfested plants after 4 hrs as a control. Three sets of 6-12 plants will be used for each sample. Keywords: Direct comparison
Project description:Potato leaves From Solanum tuberosum var. Kennebec will be wounded and oral secretions from 4th instar CPB will be isolated and added to the plants as described by Kruzmane et al (2002, Physiol. Plantarum 115:577-584). The leaf from the 6th node of the potato plant will be wounded or wounded and treated with oral secretions from CPB. Unwounded leaves from node 1-5 of the wounded and wounded plus oral secretions plants will be harvested as systemic material. The leaves will be harvested after 4 hrs and RNA will be isolated. 4 hrs was chosen because this represents a time when early and late induced genes should both be present. In addition, the leaf from the 6th node will be subjected to feeding by CPB that have been raised on potato leaves and starved for 16 hrs immediately prior to infestation. Insects will be allowed to feed for 1 hr and the leaves will be harvested after 3 additional hrs. An additional set of plants will be used to infest the leaf on the 6th node for 4 hrs. Leaves from the 6th node will be collected from uninfested plants after 4 hrs as a control. Three sets of 6-12 plants will be used for each sample. Keywords: Direct comparison 24 hybs total
Project description:As part of a wider project to assess the impact of ultrasound on in vitro plant growth, this paper aimed to determine whether the application of piezoelectric ultrasound (PE-US) would induce changes to the transcriptome of in vitro potato (Solanum tuberosum L.). After exposing explants (single-node segments with a single leaf) to PE-US (35 kHz; 70 W) for 20 min, the effect of this stressor was determined at 0 h, 24 h, 48 h, 1 w and 4 w to assess the possible immediate and residual effects of PE-US on the potato transcriptome.
Project description:Chloroplast, the energy organelle unique to plants and green algae, performs a wide range of functions including photosynthesis and biosynthesis of metabolites. However, as the most important tuber crop worldwide, the potato (Solanum tuberosum) chloroplast proteome has not been explored. Here, we use Percoll density gradient centrifugation to isolate intact chloroplasts from leaves of potato cultivar E3 and establish a reference proteome map of potato chloroplast by bottom-up proteomics. A total of 1834 non-redundant proteins, including 51 proteins encoded by the chloroplast genome, were identified in the chloroplast proteome. Extensive sequence-based localization prediction revealed over 62% of proteins to be chloroplast resident by at least one algorithm. A total of 16 proteins were selected for evaluating the prediction result by transient fluorescence assay and confirmed that 14 of them were distributed on distinct internal compartments of the chloroplast. In addition, 136 phosphorylation sites were identified in 61 proteins encoded by chloroplast proteome. Furthermore, by a comparative analysis between chloroplast and previously reported amyloplast proteomes, we reconstruct the starch metabolic pathways in the two different types of plastids. Altogether, our results establish a comprehensive proteome map with post-translationally modified sites of potato chloroplast, which would provide the theoretical principle for the research of photosynthesis pathway and starch metabolism.