Project description:The green rice leafhopper Nephotettix cincticeps have two mutualistic symbiotic bacteria (Candidatus Sulcia muelleri and Candidatus Nasuia deltocephalinicola) in its symbiont special organ bacteriome and are also infected to rickettsia. In order to determine immune challenge is induced or not in N. cincticeps, we investigated gene expression of Escherichia coli challenged N. cincticeps.
Project description:The green rice leafhopper Nephotettix cincticeps have two mutualistic symbiotic bacteria (Candidatus Sulcia muelleri and Candidatus Nasuia deltocephalinicola) in its symbiont special organ bacteriome and are also infected to rickettsia. In order to determine immune challenge is induced or not by rickettsia infection in N. cincticeps, we investigated gene expression between rickettsia-infected and rifampicin treated uninfected N. cincticeps colonies.
Project description:The green rice leafhopper, Nephotettix cincticeps (Uhler), is an important rice pest and a vector of the rice dwarf virus in Asia. Here, we produced a high-quality chromosome-level genome assembly of 753.23 Mb using PacBio (∼110×) and Hi-C data (∼94×). It contained 163 scaffolds and 950 contigs, whose scaffold/contig N50 lengths reached 85.36/2.57 Mb. And 731.19 Mb (97.07%) of the assembly was anchored into eight pseudochromosomes. Genome completeness was attained to 97.0% according to the insect reference Benchmarking Universal Single-Copy Orthologs (BUSCO) gene set (n = 1,367). We masked 347.10 Mb (46.08%) of the genome as repetitive elements. Nine hundred sixty-two noncoding RNAs were identified and 14,337 protein-coding genes were predicted. We also assigned GO term and KEGG pathway annotations for 10,049 and 9,251 genes, respectively. Significantly expanded gene families were primarily involved in immunity, cuticle, digestion, detoxification, and embryonic development. This study provided a crucial genomic resource for better understanding on the biology and evolution in family Cicadellidae.