Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:To explore the effects of different stress conditions on Bacillus subtilis str.168, a selection of conditions were applied to the organism and RNA-seq data gathered. A matrix of gene counts was produced as a basis for further analysis into the transcription profiles of Bacillus subtilis str.168.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes. For each sample analyzed in this study three biological replicates were performed. Three different samples were taken from a strain expressing the WalR-SPA protein as well as from wild-type (168) without a tagged WalR. Samples were taken from exponentially growing cells in low phosphate medium (LPDM) as well as from phosphate-limited cells (T2). Each sample compares ChIP DNA vs. Total DNA from the same cells.
Project description:The gene expression of Bacillus subtilis 168 showed 3 major patterns including early expression, transition expression and late expression We monitored Bacillus subtilis gene expression by using microarray at differernt time points
Project description:Transcriptome analysis was used to investigate the global stress response of the Gram-positive bacterium Bacillus subtilis caused by overproduction of the well-secreted AmyQ α-amylase from Bacillus amyloliquefaciens. Analyses of the control and overproducing strains were carried out at the end of exponential growth and in stationary phase, when protein secretion from B. subtilis is optimal. Among the genes that showed increased expression were htrA and htrB, which are part of the CssRS regulon that responds to high-level protein secretion and heat stress. The analysis of the transcriptome profiles of a cssS mutant compared to the wild-type, under identical secretion stress conditions, revealed several genes with altered transcription in a CssRS-dependent manner, for example citM, ylxF, yloA, ykoJ and several genes of the flgB operon. However, a high affinity CssR-binding was only observed for htrA and htrB, and possibly for citM. In addition, the DNA macroarray approach reveal that several genes of the sporulation pathway are downregulated by AmyQ overexpression, and a group of motility-specific (σD-dependent) transcripts were clearly upregulated. Subsequent flow cytometric analyses demonstrate that upon overproduction of AmyQ as well as a non-secretable variant of the α-amylase, the process of sporulation is severely inhibited. The same experiments were implemented to investigate the expression levels of the hag promoter, a well-established reporter for σD-dependent gene expression. This approach confirmed the observations based on our DNA macroarray analyses and led us to conclude that expression levels of several genes involved in motility are maintained at high levels under all conditions of α-amylase overproduction. Keywords: secretion stress response
Project description:Transcriptional response of Bacillus subtilis to moenomycin in wild-type 168. Bacillus subtilis 168, WT (-MOE) vs. WT (+MOE). The experiment was conducted in triplicate using three independent total RNA preparations. Untreated samples were labeled with Alexa Fluor 555 and moenomycin treated samples were labeled with Alexa Fluor 647.
Project description:Transcriptome analysis was used to investigate the global stress response of the Gram-positive bacterium Bacillus subtilis caused by overproduction of the well-secreted AmyQ α-amylase from Bacillus amyloliquefaciens. Analyses of the control and overproducing strains were carried out at the end of exponential growth and in stationary phase, when protein secretion from B. subtilis is optimal. Among the genes that showed increased expression were htrA and htrB, which are part of the CssRS regulon that responds to high-level protein secretion and heat stress. The analysis of the transcriptome profiles of a cssS mutant compared to the wild-type, under identical secretion stress conditions, revealed several genes with altered transcription in a CssRS-dependent manner, for example citM, ylxF, yloA, ykoJ and several genes of the flgB operon. However, a high affinity CssR-binding was only observed for htrA and htrB, and possibly for citM. In addition, the DNA macroarray approach reveal that several genes of the sporulation pathway are downregulated by AmyQ overexpression, and a group of motility-specific (σD-dependent) transcripts were clearly upregulated. Subsequent flow cytometric analyses demonstrate that upon overproduction of AmyQ as well as a non-secretable variant of the α-amylase, the process of sporulation is severely inhibited. The same experiments were implemented to investigate the expression levels of the hag promoter, a well-established reporter for σD-dependent gene expression. This approach confirmed the observations based on our DNA macroarray analyses and led us to conclude that expression levels of several genes involved in motility are maintained at high levels under all conditions of α-amylase overproduction. Secretion stress was applied by overproducing the well-secreted AmyQ α-amylase (pKTH10 vector) from B. amyloliquefaciens. Besides examining secretion stress in wild-type cells, we compared transcriptome profiles of a cssS mutant strain under conditions of high-level AmyQ production. Samples for transcriptome analyses were collected at the late exponential growth stage (one hour before the transition point) and 3 hours upon entry in the stationary growth phase. Three independent cultures of each strain were used and cells were sampled for macroarray experiments. Duplicate spots were averaged in Array-Pro software (Media Cybernetics, Inc.) and the signal was normalized after background subtraction by calculation of the percentage of total signal per gene using Microsoft Excel.
Project description:The gene expression of Bacillus subtilis 168 showed 3 major patterns including early expression, transition expression and late expression We monitored Bacillus subtilis gene expression by using microarray at differernt time points Bacillus subtilis 168 was choosed as model for gram-positive to study gene expression at different stages
Project description:Our study showed that optimizing ncRNA expression can increase or lower the yield of alpha-amylase enzyme production in Bacillus subtilis while revealing a range of potentially novel ncRNAs.