Project description:ChIP-Seq, which combines chromatin immunoprecipitation (ChIP) with high-throughput massively parallel sequencing, is increasingly being used for identification of protein–DNA interactions in-vivo in the genome. In general, current algorithms for ChIP-seq reads employ artificial estimation of the average length of DNA fragments for peak finding, leading to uncertain prediction of DNA-protein binding sites. Here, we present SIPeS (Site Identification from Paired-end Sequencing), a novel algorithm for precise identification of binding sites from short reads generated from paired-end Solexa ChIP-Seq technology. SIPeS uses a dynamic baseline directly via ‘piling up’ the corresponding fragments defined by the paired reads to efficiently find peaks corresponding to binding sites. The performance of SIPeS is demonstrated by analyzing the ChIP-Seq data of the Arabidopsis basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS). The robustness of SIPeS was demonstrated in higher sensitivity and spatial resolution in peak finding compared to three existing peak detection algorithms. Keywords: transcription factors (protein-DNA interactions)
Project description:ChIP-Seq, which combines chromatin immunoprecipitation (ChIP) with high-throughput massively parallel sequencing, is increasingly being used for identification of proteinM-bM-^@M-^SDNA interactions in-vivo in the genome. In general, current algorithms for ChIP-seq reads employ artificial estimation of the average length of DNA fragments for peak finding, leading to uncertain prediction of DNA-protein binding sites. Here, we present SIPeS (Site Identification from Paired-end Sequencing), a novel algorithm for precise identification of binding sites from short reads generated from paired-end Solexa ChIP-Seq technology. SIPeS uses a dynamic baseline directly via M-bM-^@M-^Xpiling upM-bM-^@M-^Y the corresponding fragments defined by the paired reads to efficiently find peaks corresponding to binding sites. The performance of SIPeS is demonstrated by analyzing the ChIP-Seq data of the Arabidopsis basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS). The robustness of SIPeS was demonstrated in higher sensitivity and spatial resolution in peak finding compared to three existing peak detection algorithms. Keywords: transcription factors (protein-DNA interactions) Examination of protein-DNA interactions in buds of Arabidopsis anther cell
Project description:Chromatin immuno-precipitation using anti-Flag (Sigma) antibodies in a U2OS stable cell line. Paired-end R1 and R2 reads are provided, but the processed (mapped) reads are from a single-end (R1 read only) mapping.
Project description:Sequencing libraries were generated from total RNA samples following the mRNAseq protocol for the generation of single end (16-36 hpf, 5 day larvae, adult head and adult tail) or paired end (24 hpf) libraries (Illumina). Single end reads of 36 nucleotides and paired end reads (2 x 76 nucleotides) were obtained with a GAIIx (Illumina). Gene expression at the different stages/tissu was assessed by cufflinks and HTseq.
Project description:The genome of two isogenic lines from Aedes aegypti from Ile Royale, French Guiana, with a marked difference in resistance to deltamethrin was investigated in order to understand the genetic basis of this phenotypic difference. Genomic sequencing was performed both with Illumina short, paired reads and with Minion long reads.
Project description:Purpose: The goal of this study was to develop a B-cell specific gene signature to catalog induced genes after short term in vitro TLR7 stimulation of TLR9-/- MRL/lpr B cells. Methods : Bead purified B cells (5M) from three 5-week-old TLR9-/- MRL/lpr mice were stimulated for 4 hours at 10M/ml with TLR7 agonist CL097 (Invivogen) at 5µg/ml or left unstimulated. RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN). Samples were sequenced on an NextSeq500 (Illumina, Inc) with 2 x 75 bp paired-end reads (20 million reads per sample). Results: a B-cell specific gene signature of induced genes after short term in vitro TLR7 stimulation was cataloged.
2022-08-03 | GSE202108 | GEO
Project description:RADSeq paired end reads of Pleoticus muelleri