Project description:In Multiple Sclerosis (MS), inflammatory demyelinated lesions in the brain and spinal cord lead to neurodegeneration and progressive disability. Remyelination can restore fast saltatory conduction and neuroprotection but is inefficient in MS especially with increasing age, and is not yet improvable with therapies. Intrinsic and extrinsic inhibition of oligodendrocyte progenitor cell (OPC) function contributes to remyelination failure, and we hypothesised that the transplantation of ‘improved’ OPCs, genetically edited to overcome these obstacles, could improve remyelination. Here, we edited human(h) embryonic stem cell-derived OPCs to be unresponsive to a chemorepellent released from chronic MS lesions, and transplanted them into rodent models of chronic lesions. Edited hOPCs displayed enhanced migration and remyelination compared to controls, regardless of the host age and length of time post-transplant. This study demonstrates that genetic manipulation and transplantation of hOPCs overcomes the negative environment inhibiting remyelination, with translational implications for therapeutic strategies for people with progressive MS.
Project description:Peripheral viral infection disrupts oligodendrocyte homeostasis such that endogenous remyelination may be affected. Here, we demonstrate that influenza A virus infection perpetuated a demyelination- and disease-associated oligodendrocyte (OL) phenotype following cuprizone-induced demyelination that resulted in delayed OL maturation and remyelination in the prefrontal cortex. Furthermore, we assessed cellular metabolism ex-vivo, and found that infection altered brain OL and microglia metabolism in a manner that opposed the metabolic profile induced by remyelination. Specifically, infection increased glycolytic capacity of OLs and microglia, an effect that was recapitulated by LPS stimulation of mixed glia cultures. In contrast, mitochondrial respiration was increased in OLs during remyelination, which was similarly observed in OLs of myelinating P14 mice compared to adult and aged mice. Collectively, our data indicate that respiratory viral infection is capable of suppressing remyelination, and suggest that metabolic dysfunction of OLs is implicated in remyelination impairment.
Project description:The molecular basis of CNS myelin regeneration (remyelination) is poorly understood. Here we generate a comprehensive transcriptional profile of the separate stages of spontaneous remyelination following focal demyelination in the rat CNS. White matter tracts in the rat caudal cerebellar peduncles were focally demyelinated using 0.1% ethidium bromide, the lesions were isolated using laser capture microdissection at 5, 14 and 28 days postlesion, followed by RNA extraction and Illumina beadarray analysis of differentially expressed transcripts. We found transcripts encoding retinoid acid receptor RXR-gamma is highly differentially expressed during remyelination, and that oligodendrocyte lineage cells express RXR-gamma in rat tissues undergoing remyelination and in active and remyelinated MS lesions. RXR-gamma knockdown by RNA interference or RXR-specific antagonists severely inhibit oligodendrocyte differentiation in culture. In RXR-gamma deficient mice, adult oligodendrocyte precursor cells efficiently repopulate lesions following demyelination, but display delayed differentiation into mature oligodendrocytes. Administration of the RXR agonist 9-cis-retinoic acid to demyelinated cerebellar slice cultures and to aged rats following demyelination results in more remyelinated axons. RXR-gamma is therefore a positive regulator of endogenous oligodendrocyte precursor cell differentiation and remyelination, and may be a pharmacological target for CNS regenerative therapy. 9 Samples analysed, 3 different time points each with 3 biological replicates.
Project description:Mutations in Brg1 can cause Coffin-Siris syndrome, where a patient had white matter defects and partial agenesis of the corpus callosum; however, Brg1 functions in CNS myelination and remyelination is unsure. We show that PDGFRa expressed prior than NG2, depletion of Brg1 at PDGFRα+ OPC leads to OPC differentiation restriction and myelin defects, also, Brg1 is critical for oligodendrocyte remyelination. Genomic occupancy and transcriptome analyses indicate that Brg1 promotes H3K27me3 and neuronal genes. Thus our findings reveal that Brg1 is a critical epigenetic programmer of CNS myelination and repair through recruiting H3K27me3 and neuronal genes, suggesting potential strategies of therapeutic intervention for Brg1-associated white matter defects.
Project description:Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients. RNA sequencing of oligodendrocyte progenitor cells treated with vehicle, miconazole or clobetasol for 0, 2, 6, or 12 hours. Cells were plated 1.5 hours prior to addition of drug.
Project description:The molecular basis of CNS myelin regeneration (remyelination) is poorly understood. Here we generate a comprehensive transcriptional profile of the separate stages of spontaneous remyelination following focal demyelination in the rat CNS. White matter tracts in the rat caudal cerebellar peduncles were focally demyelinated using 0.1% ethidium bromide, the lesions were isolated using laser capture microdissection at 5, 14 and 28 days postlesion, followed by RNA extraction and Illumina beadarray analysis of differentially expressed transcripts. We found transcripts encoding retinoid acid receptor RXR-gamma is highly differentially expressed during remyelination, and that oligodendrocyte lineage cells express RXR-gamma in rat tissues undergoing remyelination and in active and remyelinated MS lesions. RXR-gamma knockdown by RNA interference or RXR-specific antagonists severely inhibit oligodendrocyte differentiation in culture. In RXR-gamma deficient mice, adult oligodendrocyte precursor cells efficiently repopulate lesions following demyelination, but display delayed differentiation into mature oligodendrocytes. Administration of the RXR agonist 9-cis-retinoic acid to demyelinated cerebellar slice cultures and to aged rats following demyelination results in more remyelinated axons. RXR-gamma is therefore a positive regulator of endogenous oligodendrocyte precursor cell differentiation and remyelination, and may be a pharmacological target for CNS regenerative therapy.
Project description:We used transcription-profiling to identify mitogen-activated protein kinase (Mapk) signaling as an important regulator involved in the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes. We show in tissue culture that activation of Mapk signaling by elevation of intracellular levels of cAMP using administration of either dibutyryl-cAMP or inhibitors of the cAMP-hydrolyzing enzyme phosphodiesterase-4 (Pde4) enhances OPC differentiation. Finally, we demonstrate that systemic delivery of a Pde4 inhibitor leads to enhanced differentiation of OPCs within focal areas of toxin-induced demyelination and a consequent acceleration of remyelination.
Project description:The progressive loss of CNS myelin in patients with multiple sclerosis (MS) has been proposed to result from the combined effects of damage to oligodendrocytes and failure of remyelination. A common feature of demyelinated lesions is the presence of oligodendrocyte precursors (OLPs) blocked at a premyelinating stage. However, the mechanistic basis for inhibition of myelin repair is incompletely understood. To identify novel regulators of OLP differentiation, potentially dysregulated during repair, we performed a genome-wide screen of 1040 transcription factor-encoding genes expressed in remyelinating rodent lesions. We report that M-bM-^HM-<50 transcription factor-encoding genes show dynamic expression during repair and that expression of the Wnt pathway mediator Tcf4 (aka Tcf7l2) within OLPs is specific to lesionedM-bM-^@M-^Tbut not normalM-bM-^@M-^Tadult white matter. We report that M-NM-2-catenin signaling is active during oligodendrocyte development and remyelination in vivo. Moreover, we observed similar regulation of Tcf4 in the developing human CNS and lesions of MS. Data mining revealed elevated levels of Wnt pathway mRNA transcripts and proteins within MS lesions, indicating activation of the pathway in this pathological context. We show that dysregulation of WntM-bM-^@M-^SM-NM-2-catenin signaling in OLPs results in profound delay of both developmental myelination and remyelination, based on (1) conditional activation of M-NM-2-catenin in the oligodendrocyte lineage in vivo and (2) findings from APCMin mice, which lack one functional copy of the endogenous Wnt pathway inhibitor APC. Together, our findings indicate that dysregulated WntM-bM-^@M-^SM-NM-2-catenin signaling inhibits myelination/remyelination in the mammalian CNS. Evidence of Wnt pathway activity in human MS lesions suggests that its dysregulation might contribute to inefficient myelin repair in human neurological disorders. 12 samples total. Two variables in the experiment: genotype (wild type or Olig2cre/DA-Cat) and Developmental stage (Day 4 or Day 15). 4 phenotypes in total with 3 biological replicates for each phenotype.