Project description:By a robust unbiased ChIP-seq approach, we demonstrated that CRISPR/Cas9 had crRNA-specific off-target binding activities in human genome. However, most of those binding off-targets could not be efficiently cleaved both in vivo and in vitro which suggested the cleavage off-target activity of CRISPR/Cas9 in human genome is very limited. We provided a valuable tool to further investigate the molecular mechanism of CRISPR/Cas9 and to optimize its in vivo targeting sgRNA binding sites were identified with ChipSeq by using GFP antibody (there are 2 replicates for egfa-t1 sgRNA,emx1 sgRNA and control without sgRNA in Hek293T cells, one egfa-t1 sgRNA,emx1 sgRNA and control without sgRNA in HeLaS3 cells)
Project description:Altered DNA methylation is a crucial epigenetic event in hepatocellular carcinoma (HCC) development and progression. Through methylation-transcriptomic analysis, we identified a set of sixty potential DNA methylation-based epidriver genes. This set of genes focuses on the hypermethylation of EMX1, which is frequently observed in hepatobiliary tumors. Despite of its frequent occurrence, the function of EMX1 remains largely unknown. By utilizing bisulfite-next-generation sequencing, we have detected EMX1 DNA hypermethylation on the gene body, which is positively correlated with EMX1 mRNA expression. Further analysis revealed that EMX1 mRNA terminal exon splicing in HCC generated two protein isoforms: EMX1 full length (EMX1-FL) and alternative terminal exon splicing isoform (EMX1-X1). Cellular functional assays demonstrated that gain-of-function EMX1-FL, but not EMX1-X1, induced HCC cells migration and invasion while silencing EMX1-FL inhibited HCC cells motility. This result was further validated by in vivo tumor metastasis models. Mechanistically, EMX1-FL bound to EGFR promoter, promoting EGFR transcription and activating EGFR-ERK signaling to trigger tumor metastasis. Therefore, EGFR may be a potential therapeutic target for EMX1-high expression HCC. Our work illuminated the crucial role of gene body hypermethylation-activated EMX1-FL in promoting tumorigenesis and metastasis in HCC. These findings pave the way for targeting the EMX1-EGFR axis in HCC tumorigenicity and metastasis.
Project description:EMX1 ChIP-seq on human WTC11 For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:The bacterial CRISPR-Cas9 system has been widely adapted for RNA-guided genome editing and gene regulation in diverse organisms yet its in vivo target specificity is poorly understood. Here we provide the first genome-wide binding maps of nuclease-deactivated Cas9 loaded with guide RNAs in mammalian cells. We find a 5-nucleotide seed region in the guide RNA targets Cas9 to thousands of sites in the genome. Chromatin accessibility limits binding to the other hundreds of thousands sites with matching seed sequences, and consequently 70% of off-target binding sites are associated with genes. U-rich seeds have low numbers of off-target sites limited by both low guide RNA abundance and scarcity of complimentary sites in accessible chromatin. Unexpectedly, off-target sites show little evidence of cleavage, supporting a two-state model reminiscent of eukaryotic RNAi machinery where a short seed match triggers binding but extensive pairing is required for cleavage. ChIP-seq of HA-dCas9 loaded with 4 sgRNAs (Phc1-sg1, Phc1-sg2, Nanog-sg2, and Nanog-sg3) in mouse, and 2 sgRNAs in human (EMX1-sg1 and EMX1-sg3)
Project description:To study Hnrnpu function during cortical development we preformed single-cell RNA sequencing (scRNA-seq) on mouse neutrosphere cultures derived from E13 ICR cortices, 24 hours following treatment with CRISPR/CAS9 and two sgRNA sequences targeting mouse Hnrnpu. In parallel, we analyzed bulk RNA-seq from dissected cortices of E13 embryos in which Hnrnpu conditional truncation in the telencephalon was driven by Emx1::Cre. Additionally, we analyzed MARS-Seq trancriptomal profiles of cortices of E13 embryos carrying homozygous heterozygous or wildtype alleles of Hnrnpu truncation (Emx1::Cre driver) in combination with homozygous or heterozygous conditional deletion of Tp53
Project description:To determine the transcriptomic impacts of NMD on lineage transition in vivo, we performed mRNA-Seq of neocortices from E13.5 Emx1-Upf2cKO and their control littermates.