Project description:Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a potent threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used cDNA microarrays for the corals Acropora palmata and Montastraea faveolata (containing > 10,000 features) to measure differential gene expression during darkness stress. This is the first coral microarray experiment aimed at darkness stress, and the first for these species to interrogate gene expression at such a large scale. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were also measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to ER stress as a critical cellular event involved in darkness-specific (and possibly more general) molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and/or sampling locations were greater than differences between control and stressed fragments. To this end, we discuss the importance of factors related to host genotype, Symbiodinium genotype, and the abiotic environment that influence host gene expression and thereby can hinder an investigator’s ability to measure gene expression during a condition of interest.
Project description:Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a potent threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used cDNA microarrays for the corals Acropora palmata and Montastraea faveolata (containing > 10,000 features) to measure differential gene expression during darkness stress. This is the first coral microarray experiment aimed at darkness stress, and the first for these species to interrogate gene expression at such a large scale. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were also measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to ER stress as a critical cellular event involved in darkness-specific (and possibly more general) molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata, where gene expression differences between host colonies and/or sampling locations were greater than differences between control and stressed fragments. To this end, we discuss the importance of factors related to host genotype, Symbiodinium genotype, and the abiotic environment that influence host gene expression and thereby can hinder an investigator’s ability to measure gene expression during a condition of interest.
Project description:Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a potent threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used cDNA microarrays for the corals Acropora palmata and Montastraea faveolata (containing > 10,000 features) to measure differential gene expression during darkness stress. This is the first coral microarray experiment aimed at darkness stress, and the first for these species to interrogate gene expression at such a large scale. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were also measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to ER stress as a critical cellular event involved in darkness-specific (and possibly more general) molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and/or sampling locations were greater than differences between control and stressed fragments. To this end, we discuss the importance of factors related to host genotype, Symbiodinium genotype, and the abiotic environment that influence host gene expression and thereby can hinder an investigator’s ability to measure gene expression during a condition of interest. We employed a reference design where all control and dark-stressed samples were compared to a pooled reference aRNA sample composed of aRNA from all fragments. Since all RNA samples were compared to the reference sample, direct comparisons of gene expression across all time points and conditions can be performed.
Project description:Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a potent threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used cDNA microarrays for the corals Acropora palmata and Montastraea faveolata (containing > 10,000 features) to measure differential gene expression during darkness stress. This is the first coral microarray experiment aimed at darkness stress, and the first for these species to interrogate gene expression at such a large scale. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were also measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to ER stress as a critical cellular event involved in darkness-specific (and possibly more general) molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata, where gene expression differences between host colonies and/or sampling locations were greater than differences between control and stressed fragments. To this end, we discuss the importance of factors related to host genotype, Symbiodinium genotype, and the abiotic environment that influence host gene expression and thereby can hinder an investigator’s ability to measure gene expression during a condition of interest. We employed a reference design where all control and dark-stressed samples were compared to a pooled reference aRNA sample composed of aRNA from all fragments. Since all RNA samples were compared to the reference sample, direct comparisons of gene expression across all time points and conditions can be performed.
Project description:Twelve coral colonies of Montipora capitata were collected from patch reefs located in Kāne’ohe Bay, O’ahu, Hawai’i. Colonies were brought to shore where they were immediately split into two equally sized pieces, which were acclimated before bleaching. Half of each colony went to an increased water temperature treatment (30°C, bleaching treatment) and the other stayed at ambient temperature (25°C, nonbleached treatment) for three weeks. For the bleaching treatment, experimental tank temperatures were increased 2°C per day ( 1°C every 12 hours) for four days to a final temperature of 30°C. Samples were collected before bleaching (T1) and 24 hours after bleached colonies were returned to ambient temperature (T2), through 3 months post-bleaching (T6).
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response; coral bleaching
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching Time course with 4 time points and 4 biological replicates per time point. Each biological replicate at each time point was hybridized to a pooled reference control sample containing RNA from all control non-heat-stressed coral fragments.
Project description:The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their algal endosymbionts (Symbiodinium spp.). Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of the cellular processes specific to coral-algal symbioses. In the present study, we utilized a cDNA microarray containing 2,059 genes of the Caribbean Elkhorn coral Acropora palmata to identify genes differentially expressed upon thermal stress. Fragments from four separate colonies were exposed to elevated temperature (3˚C increase) for two days, and samples were frozen for microarray analysis after 24 and 48 hours. Fragments experienced a 60% reduction in algal cell density after two days. 204 genes were differentially expressed in samples collected one day after thermal stress; in samples collected after two days, 104 genes. Annotations of the differentially expressed genes indicate a conserved cellular stress response in A. palmata involving: 1) growth arrest; 2) chaperone activity; 3) nucleic acid stabilization and repair; and 4) the removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and symbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are also compared to those from a previous coral microarray study of thermal stress in Montastraea faveolata.