Project description:FACT mediates cohesin function on chromatin Cohesin is a key regulator of genome architecture with roles in sister chromatid cohesion and the organisation of higher-order structures during interphase and mitosis. The recruitment and mobility of cohesin complexes on DNA are restricted by nucleosomes. Here we show that cohesin role in chromosome organization requires the histone chaperone FACT. Depletion of FACT in metaphase cells affects cohesin stability on chromatin reducing its accumulation at pericentric regions and binding on chromosome arms. Using Hi-C, we show that cohesin-dependent TAD (Topological Associated Domains)-like structures in G1 and metaphase chromosomes are disrupted in the absence of FACT. Surprisingly, sister chromatid cohesion is intact in FACT-depleted cells, although chromosome segregation failure is observed. Our results uncover a role for FACT in genome organisation by facilitating cohesin dependent compartmentalization of chromosomes into loop domains.
Project description:The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. However, nucleosome number in cells was considered fixed, and no condition was described where nucleosome number was reduced. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker and variant histones, and a correspondingly reduced number of nucleosomes. Yeast nhp6 mutants lacking NHP6A and –B proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform, and our results can be modelled assuming that different nucleosomal sites compete for the available histones: sites with high affinity are almost always packaged into nucleosomes both in wt and nucleosome-depleted cells, whereas sites with low affinity are less frequently packaged in nucleosome-depleted cells. We suggest that by modulating the occupancy of nucleosomes histone availability may constitute a novel layer of epigenetic regulation.
Project description:Nucleosome organization determines local chromatin structure and changes in nucleosome occupancy during the cell cycle are correlated with nuclear functions. We used oligonucleotide tiling arrays to analyze the cell cycle dependence of nucleosome occupancy at cohesin binding sites in yeast chromosomes. Processed data included in Series table. Data processing: To improve the signal to noise ratio, the raw data were first processed with dCHIP with its PM/MM difference model and invariant set normalization method, using the entire dataset. 8251 out of the total 92812 probe pairs were excluded from further analysis because they either have multiple hits in the genome or the signal from the genomic hybridization was too weak (cutoff at (PM-MM)/MM < 0.25). After Gaussian smoothing (s =75 bp), the data were normalized by that of the genomic DNA. These values were then converted to log2 scale. The mean was then computed for each array. To facilitate comparisons, the different datasets were rescaled to have the same mean with log2 value of 0. The log2 ratio along the four chromosomes at all the cell cycle stages are included. The ID represents "Chromosome No_chromosomal coordinate". Keywords: time course Yeast cells were arrested at G1/S boundary with alpha factor, then released for 15 min, 40 min, 65 min and 95 min respectively. Cells were collected at each time points, then mononucleosomal DNA was purified and hybridized to Affymetrix oligonucleotide tiling arrays. Total genomic DNA was hybridized as normalization signal.
Project description:Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibition of a DNA damage response. In yeast, the silent information regulator (Sir) proteins bind to terminal telomeric repeats and to subtelomeric X-elements resulting in histone deacetylation and transcriptional silencing. Herein, we show that sir2 mutant strains display a very specific loss of a nucleosome residing in the X-element. Most yeast telomeres contain an X-element and the nucleosome occupancy defect in sir2 mutants is remarkably consistent between different telomeres.
Project description:The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. However, nucleosome number in cells was considered fixed, and no condition was described where nucleosome number was reduced. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker and variant histones, and a correspondingly reduced number of nucleosomes. Yeast nhp6 mutants lacking NHP6A and –B proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform, and our results can be modelled assuming that different nucleosomal sites compete for the available histones: sites with high affinity are almost always packaged into nucleosomes both in wt and nucleosome-depleted cells, whereas sites with low affinity are less frequently packaged in nucleosome-depleted cells. We suggest that by modulating the occupancy of nucleosomes histone availability may constitute a novel layer of epigenetic regulation. This microarray experiment forms part of a larger study of the effects of nucleosome depletion on transcription Using the Affymetrix Yeast Genome 2.0 Array, yeast nhp6 mutants (lacking NHP6A and NHP6B proteins) were compared to wildtype yeast cells (3 biological replicates per condition)