Project description:One challenge of cancer precision medicine is the heterogeneity of genetic and non-genetic alterations that result in dysfunctional molecular pathways. As an emerging drug discovery effort, dysregulation in Hippo pathway signaling is known to drive oncogenesis across numerous cancer types but lacks recurrent mutation(s) that are often found in other canonical signaling pathways. Here, we use first principles approach to develop a machine-learning framework to identify a robust, lineage-independent gene expression signature to quantify Hippo pathway dependency in cancers. Through integrating data from multi-omics platforms, this data-driven approach has enabled identifying a proposed combination with MAPK inhibition for direct targeting of Hippo pathway dependent cancers for which we then elucidate the underlying molecular mechanism. The results underscore how a multifaceted approach, computational models combined with laboratory efforts, can accelerate precision medicine efforts toward co-targeting Hippo and MAPK pathways, an approach that can be generalized to other key cancer signaling pathways to define therapeutic strategies.
Project description:One challenge of cancer precision medicine is the heterogeneity of genetic and non-genetic alterations that result in dysfunctional molecular pathways. As an emerging drug discovery effort, dysregulation in Hippo pathway signaling is known to drive oncogenesis across numerous cancer types but lacks recurrent mutation(s) that are often found in other canonical signaling pathways. Here, we use first principles approach to develop a machine-learning framework to identify a robust, lineage-independent gene expression signature to quantify Hippo pathway dependency in cancers. Through integrating data from multi-omics platforms, this data-driven approach has enabled identifying a proposed combination with MAPK inhibition for direct targeting of Hippo pathway dependent cancers for which we then elucidate the underlying molecular mechanism. The results underscore how a multifaceted approach, computational models combined with laboratory efforts, can accelerate precision medicine efforts toward co-targeting Hippo and MAPK pathways, an approach that can be generalized to other key cancer signaling pathways to define therapeutic strategies.
Project description:Contemporary analyses focused on a limited number of clinical and molecular features have been unable to accurately predict clinical outcomes in pancreatic ductal adenocarcinoma (PDAC). Here we describe a novel, conceptual approach and use it to analyze clinical, computational pathology, and molecular (DNA, RNA, protein, and lipid) analyte data from 74 patients with resectable PDAC. Multiple, independent, machine learning models were developed and tested on curated singleand multi-omic feature/analyte panels to determine their ability to predict clinical outcomes in patients. The multi-omic models predicted recurrence with an accuracy and positive predictive value (PPV) of 0.90, 0.91, and survival of 0.85, 0.87, respectively, outperforming every singleomic model. In predicting survival, we defined a parsimonious model with only 589 multi-omic analytes that had an accuracy and PPV of 0.85. Our approach enables discovery of parsimonious biomarker panels with similar predictive performance to that of larger and resource consuming panels and thereby has a significant potential to democratize precision cancer medicine worldwide.
Project description:High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed a multi-omics approach for uncovering MoAs through an interpretable machine learning model of the effects of compounds on transcriptomic, epigenomic, metabolomic, and proteomic data. We applied this approach to examine compounds with beneficial effects in models of Huntington’s disease, finding common MoAs for previously unrelated compounds that were not predicted based on similarities in the compounds’ structures, connectivity scores, or binding targets. We experimentally validated two such disease-relevant MoAs, autophagy activation and bioenergetics manipulation. This interpretable machine learning approach can be used to find and evaluate MoAs in future drug development efforts.
Project description:High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed a multi-omics approach for uncovering MoAs through an interpretable machine learning model of the effects of compounds on transcriptomic, epigenomic, metabolomic, and proteomic data. We applied this approach to examine compounds with beneficial effects in models of Huntington’s disease, finding common MoAs for previously unrelated compounds that were not predicted based on similarities in the compounds’ structures, connectivity scores, or binding targets. We experimentally validated two such disease-relevant MoAs, autophagy activation and bioenergetics manipulation. This interpretable machine learning approach can be used to find and evaluate MoAs in future drug development efforts.
Project description:Identification of patients with life-threatening diseases including leukemias or infections such as tuberculosis or COVID-19 is an important goal of modern precision medicine. However, there is an increasing divide between what is technically possible and what is allowed because of privacy legislation. We have recently illustrated that classical machine learning can identify leukemia patients based on their blood transcriptomes. To facilitate integration of any omics data from any data owner world-wide without violating privacy laws, we here introduce Swarm Learning (SL), a decentralized machine learning approach uniting edge computing, artificial intelligence (AI), blockchain and privacy protection without the need for a central coordinator thereby going beyond federated learning. To illustrate its feasibility, using more than 12,000 transcriptomes from peripheral blood mononuclear cells and more than 2,000 peripheral blood transcriptomes we demonstrate that SL of omics data distributed across different individual sites leads to disease classifiers that outperform those developed at individual sites. Yet, SL completely protects local privacy regulations by design. We propose this approach to noticeably accelerate the introduction of precision medicine.
Project description:Identification of patients with life-threatening diseases including leukemias or infections such as tuberculosis or COVID-19 is an important goal of modern precision medicine. However, there is an increasing divide between what is technically possible and what is allowed because of privacy legislation. We have recently illustrated that classical machine learning can identify leukemia patients based on their blood transcriptomes. To facilitate integration of any omics data from any data owner world-wide without violating privacy laws, we here introduce Swarm Learning (SL), a decentralized machine learning approach uniting edge computing, artificial intelligence (AI), blockchain and privacy protection without the need for a central coordinator thereby going beyond federated learning. To illustrate its feasibility, using more than 12,000 transcriptomes from peripheral blood mononuclear cells and more than 2,000 peripheral blood transcriptomes we demonstrate that SL of omics data distributed across different individual sites leads to disease classifiers that outperform those developed at individual sites. Yet, SL completely protects local privacy regulations by design. We propose this approach to noticeably accelerate the introduction of precision medicine.