Project description:The century-old Mycobacterium bovis Bacillus Calmette-Guerin (BCG) remains the only licensed vaccine against tuberculosis (TB). Despite this, there is still a lot to learn about the immune response induced by BCG, both in terms of phenotype and specificity. Here, we investigated the BCG-specific gene expression changes induced in PBMCs and CD4 memory T cells by BCG in individuals pre- and 8m post vaccination. We also determined whether reactivity against a peptide pool defined in individuals with controlled latent TB infection (MTB300), and with peptides homologous to peptides found in BCG, was boosted following BCG vaccination.
Project description:Mycobacterium tuberculosis (Mtb) is the leading cause of death from infection worldwide. Intradermal (ID) vaccination with BCG has variable efficacy against pulmonary tuberculosis, the major cause of mortality and disease transmission. Here we show that the route and dose of BCG vaccination alters circulating and lung resident T cells and subsequent protection against Mtb challenge in nonhuman primates (NHP). NHP immunized with BCG by the intravenous (IV) route induced substantially higher antigen-specific CD4 (Th1 or Th17) and CD8 responses in blood, spleen, bronchoalveolar lavage (BAL), and lung lymph nodes compared to the same BCG dose administered by ID or aerosol (AE) routes. Moreover, IV immunization was the only route that induced a high frequency of antigen-specific tissue resident T cells in lung parenchyma. Six months after BCG vaccination, NHP were challenged with virulent Mtb. Strikingly, 9 of 10 NHP that received BCG IV were highly protected, with 6 NHP showing no detectable infection as determined by PET CT imaging, mycobacterial growth, pathology, granuloma formation, or de novo immune responses to Mtb-specific antigens. The finding that BCG IV prevents or significantly limits Mtb infection in NHP has important implications for vaccine development and provides a model for determining immune correlates and mechanisms of protection against TB.
Project description:Vaccination against tuberculosis by intradermal Bacillus Calmette-Guérin (BCG) injection saves many lives, supposedly by inducing adaptive immune memory in lymphocytes. Epidemiologically, BCG vaccination is also associated with reduced childhood mortality unrelated to TB, which is attributed to innate immune memory, also termed trained immunity. We recently demonstrated improved protection against tuberculosis infection in highly susceptible rhesus macaques by mucosal BCG vaccination, correlating with a unique local but no peripheral immune profile. Here, we investigated local and peripheral innate immune function after intradermal versus mucosal vaccination with M. bovis BCG or the live attenuated, M. tuberculosis-derived candidate, MTBVAC. The results demonstrate an augmented frequency of trained immunity in monocytes after respiratory mucosal administration of live attenuated mycobacterial vaccines compared to intradermal immunization, with MTBVAC being equally potent as BCG. These results provide further support to strategies for improving TB vaccination and, more broadly, modulating innate immunity via mucosal surfaces.
Project description:To determine the blood transcriptional response to intravenous (IV) BCG vaccination in rhesus macaques and identify correlates of vaccine-mediated protection against Mycobacterium tuberculosis (Mtb) challenge.
Project description:To determine the blood transcriptional response to BCG vaccination administered via different routes in rhesus macaques and identify correlates of vaccine-mediated protection against Mycobacterium tuberculosis (Mtb) challenge.
Project description:Although BCG has been used for almost 100 years to immunize against Mycobacterium tuberculosis, TB remains a global public health threat. Numerous clinical trials are underway studying novel vaccine candidates and strategies to improve or replace BCG, but vaccine development still lacks a well-defined set of immune correlates to predict vaccine-induced protection against tuberculosis. This study aimed to address this gap by examining transcriptional responses to BCG vaccination in C57BL/6 inbred mice, coupled with protection studies using Diversity Outbred mice. We evaluated relative gene expression in blood obtained from vaccinated mice, because blood is easily accessible and data can be translated to human studies. We first determined that the average peak time after vaccination is 14 days for gene expression of a small subset of immune-related genes in inbred mice. We then performed global transcriptomic analyses using whole blood samples obtained two weeks after mice were vaccinated with BCG. Using comparative bioinformatic analyses and qRT-PCR validation, we developed a working correlate panel of 18 genes that were highly correlated with administration of BCG but not heat-killed BCG. We then tested this gene panel using BCG-vaccinated Diversity Outbred mice and revealed associations between the expression of a subset of genes and disease outcomes after aerosol challenge with M. tuberculosis. These data therefore demonstrate that blood-based transcriptional immune correlates measured within a few weeks after vaccination can be derived to predict protection against M. tuberculosis, even in outbred populations.
Project description:Despite wide scale vaccination with Mycobacterium bovis BCG, the prevalence of tuberculosis remains high, reflecting the global variable efficacy of this vaccine against adult pulmonary TB. Characterisation of different immune responses to M. tuberculosis and M. bovis BCG would increase understanding of pathology following M. tuberculosis infection or reactivation, and would facilitate the rational design of a new vaccine. Gene expression profiling was conducted on samples from diluted whole blood cultures from three healthy donors following incubation with live mycobacteria for six days. Approximately 8,000 gene entities were at least two-fold up- or down- regulated by the mycobacteria, and both mycobacteria induced similar expression changes in approximately 2,300 genes. Strikingly, many genes exhibited qualitatively different expression patterns, with over 1,000 genes up-regulated in response to M. bovis BCG but not changed by M. tuberculosis. Gene Ontology analysis revealed that the genes which failed to upregulate in M. tuberculosis-infected cultures included a large proportion of genes with lysosomal function. The inhibited up-regulation of expression of IFN-γ-inducible protein 30, acid phosphatase 2, cathepsin B and GM2 ganglioside activator was verified in samples from six biologically independent donors by qRT-PCR. The failure to up-regulate these genes in response to M. tuberculosis may constitute an immune evasion mechanism, preventing intracellular killing and antigen presentation. Blood from three healthy BCG-vaccinated donors was diluted with growth medium and incubated alone or with live M. tuberculosis (H37Rv), M. bovis BCG for 6 days. RNA samples were pooled before hybridisation.
Project description:The current tuberculosis vaccine, Bacillus Calmette-Guérin (BCG), provides insufficient protection. We deleted the NADH dehydrogenase 1 subunit G (nuoG) gene from BCG ΔureC::hly, the most advanced live vaccine candidate in clinical development. Removal of nuoG enhanced co-localisation of LC3 to bacteria in human host cells. BCG ΔureC::hly ΔnuoG vaccination was safer than BCG and improved efficacy of BCG ΔureC::hly by reducing tuberculosis load in murine lungs 1000-fold.