Project description:In this study, miRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 125, 42 and 99 miRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively. Androgenetic, parthenogenetically activated and fertilized embryonic stem cell lines were established from androgenetic and fertilized blasotocyst. microRNA microarrays were repeated three times using passages 6, 7 and 8.
Project description:In this study, mRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 2394, 87 and 1788 mRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively. Androgenetic, parthenogenetic and fertilized embryonic stem cell lines were established from androgenetic, parthenogenetically activated and fertilized blasotocyst. mRNA microarrays were repeated three times using passages 6, 7 and 8.
Project description:In this study, miRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 125, 42 and 99 miRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively.
Project description:The study of genomic imprinting in mammals started with analysis of parthenogenetic embryos. At the phenotypic level, embryos with two maternal genomes and no paternal genome proceed through early development unimpaired, and only begin to fail after implantation. The most recognizable early defect is reduced or non-existent trophoblast, the tissue that gives rise to the placenta. We applied the procedure for establishing Trophoblast Stem cells (TS cells) developed in the Rossant lab to parthenogenetic embryos, and were successful in making four different TS cell lines, three from MI oocyte derived blastocysts and one from MII derived blastocysts. Initial molecular characterization, including microarray analysis, indicates that these cells are indistinguishable from fertilized TS cells, with the single exception of null expression of the paternally expressed gene Snrpn. The only significant difference between parthenogenetic and fertilized TS cells was the frequency with which they could be derived. In our hands, fertilized blastocyst outgrowths produced TS cells at robust rates (10-12 colonies per blastocyst), while parthenogenetic blastocyst outgrowths produced only 4 colonies in 50 outgrowths, 100 times less frequently than fertilized embryos. This led us to hypothesize that those few TS cells that arose in parthenogenetic outgrowths were probably a result of very low frequency stochastic variation in the imprint status of a gene or genes required for either establishment or maintenance of stem cells, or both. The corollary to this hypothesis posits that the early failure of parthenogenetic embryos, and in particular parthenogenetic trophoblast, is a function of impaired stem cell function. This raises the intriguing possibility that microarray comparisons of parthenogenetic, fertilized and androgenetic blastocysts may reveal the identities of genes important for stem cell biology. To this end, my colleague Keith Latham, at the Fels Institute, Temple University, Philadelphia, made amplified cDNAs from pools of ten each of androgenetic, gynogenetic, or fertilized blastocysts. Three separate pools for each type of embryo were prepared for microarray analysis. The embryos were all produced by nuclear transfers between zygotes, a difficult technique that is Keith's special expertise. He used the Brady/Iscove protocol to generate quantitative 3' end biased cDNAs. We would like to compare the transcriptomes of these embryos using the MOE430 2.0 arrays. We expect that important insights into the biology of uniparental embryos in general, and stem cells in particular may be revealed. Experiment Overall Design: this experiment include 3 samples and 18 replicates
Project description:In this study, mRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 2394, 87 and 1788 mRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively.
Project description:The study of genomic imprinting in mammals started with analysis of parthenogenetic embryos. At the phenotypic level, embryos with two maternal genomes and no paternal genome proceed through early development unimpaired, and only begin to fail after implantation. The most recognizable early defect is reduced or non-existent trophoblast, the tissue that gives rise to the placenta. We applied the procedure for establishing Trophoblast Stem cells (TS cells) developed in the Rossant lab to parthenogenetic embryos, and were successful in making four different TS cell lines, three from MI oocyte derived blastocysts and one from MII derived blastocysts. Initial molecular characterization, including microarray analysis, indicates that these cells are indistinguishable from fertilized TS cells, with the single exception of null expression of the paternally expressed gene Snrpn. The only significant difference between parthenogenetic and fertilized TS cells was the frequency with which they could be derived. In our hands, fertilized blastocyst outgrowths produced TS cells at robust rates (10-12 colonies per blastocyst), while parthenogenetic blastocyst outgrowths produced only 4 colonies in 50 outgrowths, 100 times less frequently than fertilized embryos. This led us to hypothesize that those few TS cells that arose in parthenogenetic outgrowths were probably a result of very low frequency stochastic variation in the imprint status of a gene or genes required for either establishment or maintenance of stem cells, or both. The corollary to this hypothesis posits that the early failure of parthenogenetic embryos, and in particular parthenogenetic trophoblast, is a function of impaired stem cell function. This raises the intriguing possibility that microarray comparisons of parthenogenetic, fertilized and androgenetic blastocysts may reveal the identities of genes important for stem cell biology. To this end, my colleague Keith Latham, at the Fels Institute, Temple University, Philadelphia, made amplified cDNAs from pools of ten each of androgenetic, gynogenetic, or fertilized blastocysts. Three separate pools for each type of embryo were prepared for microarray analysis. The embryos were all produced by nuclear transfers between zygotes, a difficult technique that is Keith's special expertise. He used the Brady/Iscove protocol to generate quantitative 3' end biased cDNAs. We would like to compare the transcriptomes of these embryos using the MOE430 2.0 arrays. We expect that important insights into the biology of uniparental embryos in general, and stem cells in particular may be revealed. Keywords: other
Project description:The first mitotic division causes both parental genomes present in the zygote to segregate into two biparental diploid daughter cells. This fundamental tenet was challenged by the observation that blastomeres with different genome ploidy and distinct parental genotypes can coexist within individual embryos. We hypothesized that whole parental genomes can segregate into distinct blastomere lines during the multipolar division of the zygote, a phenomenon referred to as “heterogoneic” cell division. Here, we provide evidence of genome-wide segregation errors in two human blastocysts and further pinpoint its origin in a bovine model by mapping the genomic landscape of 82 blastomeres from 25 embryos that underwent multipolar division at the zygote stage using genome-wide SNP arrays and sequencing. In most embryos, the coexistence of androgenetic and diploid or polyploid blastomeres with or without anuclear blastomeres, androgenetic and anuclear blastomeres, and androgenetic and gynogenetic blastomeres within the same embryo provided proof that multipolar zygotic division coincides with heterogoneic segregation of the parental genome. By mapping the segregational origin of the genomic content, we deduced distinct segregation mechanisms underlying heterogoneic cell division including segregation by a tripolar spindle, the pronuclear extrusion of a paternal genome and, the operation of an ectopic paternal or private parental spindles. Polyspermic embryos expel excessive paternal genomes resulting in an androgenetic or polyploid blastomere. Confirming the results in human blastocysts we found genome-wide segregation errors to persist in bovine blastocysts.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.