Project description:The present study profiled and analyzed gene expression of the maize ear at four key developmental stages. Based on genome-wide profile analysis, we detected differential mRNA of maize genes. Some of the differentially expressed genes (DEGs) were predicted to be potential candidates of maize ear development. Several well-known genes were found with reported mutants analyses, such as, compact plant2 (ct2), zea AGAMOUS homolog1 (zag1), bearded ear (bde), and silky1 (si1). MicroRNAs such as microRNA156 were predicted to target genes involved in maize ear development. Antisense transcripts were widespread throughout all the four stages, and are suspected to play important roles in maize ear development. Thus, identification and characterization of important genes and regulators at all the four developmental stages will contribute to an improved understanding of the molecular mechanisms responsible for maize ear development.
2015-04-30 | GSE49805 | GEO
Project description:Multi-parental population for maize northern leaf blight study
Project description:Transformation of the Arabidopsis ATHB17 gene into maize results in the expression of a truncated protein (smaller by 113 amino acids) that functions as a dominant-negative regulator that can modify activity of endogenous maize HD-Zip II transcription factors. This RNASeq experiment indicates that the observed effects of ATHB17d113 on the maize ear inflorescence and ear transcriptome are very small. Expression of ATHB17delta113 protein in maize leads to changes in ear growth resulting in increased ear size at early reproductive stages and, potentially increased sink size.
Project description:Non-additive gene regulation has been recently suggested as an important factor promoting phenotypic variation and plasticity. In order to obtain a description of gene expression status at an early stage of ear development in a maize (Zea mays L.) F1 hybrid as relative to its parental inbreds, we compared gene expression profiles in immature ears of elite inbred lines B73 and H99 to one of their F1 hybrids (B73xH99) using cDNA microarray technology. Results show several genes expressed at a significantly different level between both inbred lines and their hybrid. In addition, gene expression non-additivity in the hybrid was detected on a broad scale, consisting of both dominance and over-dominance components, indicating that complex non-additive interactions at the molecular level exist in the developing ear of the studied maize hybrid. Non-additively regulated genes belong to a wide range of molecular functions, indicating that several regulatory and metabolic patterns are possibly affected during ear development in the investigated hybrid. We discuss the possibility that observed gene expression non-additivity in immature ear might be an early molecular manifestation of hybrid vigor, the most exploited factor for maize agronomic improvement.
Project description:The present study profiled and analyzed gene expression of the maize ear at four key developmental stages. Based on genome-wide profile analysis, we detected differential mRNA of maize genes. Some of the differentially expressed genes (DEGs) were predicted to be potential candidates of maize ear development. Several well-known genes were found with reported mutants analyses, such as, compact plant2 (ct2), zea AGAMOUS homolog1 (zag1), bearded ear (bde), and silky1 (si1). MicroRNAs such as microRNA156 were predicted to target genes involved in maize ear development. Antisense transcripts were widespread throughout all the four stages, and are suspected to play important roles in maize ear development. Thus, identification and characterization of important genes and regulators at all the four developmental stages will contribute to an improved understanding of the molecular mechanisms responsible for maize ear development. Seeds of the maize inbred line 18-599 (Maize Research Institute, Sichuan Agricultural University, Chengdu, China) were grown in a growth chamber at 24°C/18°C (day/night) with 12 h illumination per day. Ears were collected as described previously [10] at four developmental stages: the growth point elongation, spikelet differentiation, floret primordium differentiation, and the floret organ differentiation phases. In brief, ears were manually collected at the four developmental stages. All the samples were harvested and immediately frozen in liquid nitrogen, and stored at -80°C until used for RNA isolation.
Project description:Maize develops separate ear and tassel inflorescences with initially similar morphology but finally different architecture and sexuality. The detailed regulatory mechanisms underlying these changes still remain largely clear. In this study, through analyzing the time-course meristem transcriptomes and floret single-cell transcriptomes of ear and tassel we revealed the regulatory dynamics and pathways underlying inflorescence development and sex differentiation. Our study provides a deep understanding of the regulatory mechanisms underlying inflorescence development and sex differentiation in maize, laying the foundation to identify new regulators and pathways for maize hybrid breeding and improvement.
Project description:Transformation of the Arabidopsis ATHB17 gene into maize results in the expression of a truncated protein (smaller by 113 amino acids) that functions as a dominant-negative regulator that can modify activity of endogenous maize HD-Zip II transcription factors. This RNASeq experiment indicates that the observed effects of ATHB17d113 on the maize ear inflorescence and ear transcriptome are very small. Expression of ATHB17delta113 protein in maize leads to changes in ear growth resulting in increased ear size at early reproductive stages and, potentially increased sink size. Two ATHB17delta113 expressing events (Event 1 and Event 2) were compared to control plants (herein referred to as WT) in the context of Monsanto Elite Maize hybrid line NN6306. Three bioreps of both Ear inflorescence and Ear tissues were sampled for the WT and each of the two transgenic events.
Project description:Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns. Experiment Overall Design: Affymetrix expression profiling was used to study gene expression in immature ear tissue from maize. Three biological replicates were performed for four different genotypes; B73, Mo17, B73xMo17 and Mo17xB73.