Project description:Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumors that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced transformation and highlighted a small set of genes associated with leukocyte dissemination. CRISPR/Cas9-mediated knock-down of GZMA and RASGRP1 in macrophages attenuated for dissemination led to a regain in their dissemination in Rag2/gC mice confirming their suppressor roles in vivo. Comparing the transcriptomes of 934 human cancer cell lines to that of Theileria-transformed bovine B cells again highlighted GZMA and RASGRP1 and CRISPR-mediated overexpression of GZMA and RASGRP1 dampened the dissemination potential of human B-lymphomas. The ensemble provide evidence for a novel suppressor function in the dissemination of both T. annulata-transformed bovine leukocytes and human B-lymphomas.
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection.
Project description:To understand the immune response of cows to the apicomplexan parasite Theileria annulata, we used ex vivo isolate cells derived from two infected calve : Holstein 12886 (Bos taurus), which is known to be susceptible to the disease, and Sahiwal 82H (Bos indicus), which is known to be resistant. The infected bovine macrophages of the two species with Theileria were collected and performed multiome 10X Chromium genomics scRNA-Seq.