Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring.
Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods. Two-condition experiment, small vs. large-fish liver cells. Sept. and Dec. spawning fish. Biological replicates: 4 small replicates, 4 large replicates for each time period.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring. Small vs. large-fish liver and muscle cells from neomale offspring. Biological replicates: 4 small replicates, 4 large replicates.
Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods.
Project description:Stocking density is considered as a key factor determining the productivity of fish aquaculture systems. The transcriptomic response to crowding stress is, however, still poorly investigated. We aimed at the identification of potential biomarker genes via microarray analyses to get insight into molecular pathways modulated through density-induced stress in farmed rainbow trout Oncorhynchus mykiss. Transcriptome profiling in liver, kidney, and gills was complemented with behaviarol observation and analysis of classical plasma parameters. Individuals of two trout strains were exposed for eight days to definite stocking densities, 1 kg/m³ (low density); 10 kg/m³ (moderate); 18 kg/m³ (elevated); and 35 kg/m³ (high). Whereas stocking density had no significant effect on cortisol levels, plasma glucose levels were elevated in trout kept at high density. Pathway enrichment analyses confirmed the upregulation of HIF1a signaling in liver contributing to glucose homeostasis during stress conditions, while mTOR and PI3K/AKT signaling pathways were downregulated. Further perturbed hepatic pathways were involved in protein ubiquitination and the biosynthesis of cholesterol, retinol and glutathione. Three stocking density conditions were investigated: an uncrowded âmoderateâ density (MD: 10 kg trout/m³) , an elevated density (ED: 18 kg/m³ ), and high density (HD: 35 kg/m³). The experiment was performed twice with two strains of Steelhead rainbow trout (Troutlodge and Born trout), randomly assigned to identical glass tanks with MD (30 and 34 individuals), ED (60 and 64 individuals), and HD (120 and 140 individuals). Trout were sampled 8 d after experimental onset.
Project description:Rainbow trout is a typical cold-water fish, with the intensification of global warming, high temperatures severely restrict the development of aquaculture in summer. Understanding the molecular regulation mechanisms of rainbow trout in response to heat stress will be salutary to alleviate heat stress-related damage. In the present study, we performed transcriptome analysis of liver tissues in rainbow trout under heat stress (24℃) and control (18℃) conditions to identify induced lncRNAs and pathways by heat stress. More than 658 million clean reads and 5,916 lncRNAs were identified from six liver libraries. A total of 927 novel lncRNAs were generated and 428 differentially expressed lncRNAs were screened through stringent thresholds. The RNA-seq results were verified by RT-qPCR. In addition, the regulatory network of important functional lncRNA-mRNA were constructed. GO and KEGG enrichment analysis of target gene of differentially expressed lncRNAs were performed. Many target genes involved in maintaining homeostasis or adapting to stress and stimuli were highly induced under heat stress. Several important regulatory pathways were involved in heat stress, including thyroid hormone signaling pathway, PI3K-Akt signaling pathway, estrogen signaling pathway, etc. This result broadens our understanding of lncRNA associated with heat stress and provides new insights into lncRNA-mediated regulation of rainbow trout heat stress.
Project description:Gynogenetic development in fish is induced by activation of eggs with irradiated spermatozoa followed by exposure of the activated eggs to the temperature or high hydrostatic pressure (HHP) shock that prevents 1st cell cleavage. Produced specimens are fully homozygous fish also known as Doubled Haploids. Gynogenetic DH individuals might be used aquaculture and developmental biology unfortunately; the potential application of DHs is limited by a rather low survival rate of such specimens. However, observed variation in the survival rates of the gynogenetic embryos originated from different clutches suggests that eggs from some females have increased ability for gynogenetic development than others. Taking into account that first 10 cell cleavages in the fish embryos rely on the maternal RNA, it is tempting to assume that the ova showing such a vast difference in potential for gynogenesis may have also had different biological characteristics including alterations in maternal gene expression profiles. If so, then genes that up- or down –regulated expression in eggs increases competence for gynogenetic development in trout might be considered as candidate genes for gynogenesis in rainbow trout. Thus, the main goal of the project is identification of genes that increase ability of rainbow trout eggs for gynogenetic development. Within the project, we tried to verify following hypotheses: 1. Eggs from different females have different potential for gynogenesis in rainbow trout. 2. Eggs with different ability for gynogenetic development with all maternal inheritance have different biological characteristics including morphology and anti-ROS enzyme activities. 3. Eggs with increased competence for gynogenesis have altered transcriptomic profiles. 4. There are some particular genes that altered expression in trout eggs enable development of gynogenetic embryos. Gynogenetic rainbow trout specimens were produced in the course of activation of eggs with UV-irradiated spermatozoa and High Hydrostatic Pressure shock (HHP) applied around 1st cell cleavage. Eggs from several females were used in the experiment. Survival rates of gynogenetic rainbow trout was monitored since fertilization. Quality of eggs was examined by assessment of their morphology and activity of anti-ROS (reactive oxygene species) enzymes. Transcriptome of eggs showing increased and decreased developmental competence for gynogenesis was analyzed using RNA-seq approach and results compared to find out any alterations related to survival of gynogenetic trout.