Project description:Agilent 4x44k tobacco micro array of wild type tobacco (WT) and whole tobacco mosaic virus (TMV) containing transgenic tobacco plants. The transgenic plants before resistance break (BRB-6 weeks), after resistance break (ARB-8 weeks) and wild type tobacco plants infected with TMV (TMVi-9weeks) leaves were analyzed. Three biological replicates were performed for each sample.
Project description:Tobacco mosaic virus (TMV) became one of the model virus for fundamental biological research and understanding of the host-pathogen interaction. It utilizes host machinery smartly to complete the life cycle, though many parts of life cycle remained a mystery, such as host factors involved in virus replication processes. We utilized the 8-Plex iTRAQ study to understand host-pathogen interaction between TMV and host tobacco.
Project description:In this study we used vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem-associated translatome responses to infection by tobacco mosaic virus (TMV) in the systemic host Nicotiana benthamiana. Three different promoter:FLAG-RPL18 lines were used. These included two phloem specific promoters (pSUC2 and pSULTR2;2) as well as the more ubiquitously expressed cauliflower mosaic virus 35S promoter (p35S). Immunopurification of ribosome-mRNA complexes was accomplished by the method described in Reynoso et al. (Plant Functional Genomics: Methods and Protocols, 185-207; 2015). The dataset includes samples from the leaves of 5-week-old plants inoculated with TMV (1 mg/mL) or mock inoculated with sterile water.
Project description:In this study we used vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem-associated translatome responses to infection by tobacco mosaic virus (TMV) in the systemic host Arabidopsis thaliana ecotype Shahdara. Three different promoter:FLAG-RPL18 lines were used. These included two phloem specific promoters (pSUC2 and pSULTR2;2) as well as the more ubiquitously expressed cauliflower mosaic virus 35S promoter (p35S). Immunopurification of ribosome-mRNA complexes was accomplished by the method described in Reynoso et al. (Plant Functional Genomics: Methods and Protocols, 185-207; 2015). The dataset includes samples from the leaves of 5-week-old plants inoculated with TMV (1 mg/mL) or mock inoculated with sterile water.
Project description:To characterize the PTI response of tomato and the effect of the delivery of a subset of effectors, we performed an RNA-seq analysis of tomato Rio Grande prf3 leaves challenged with either the flgII-28 peptide or the following bacterial strains: Agrobacterium tumefaciens GV2260, Pseudomonas fluorescens 55, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato (Pst) DC3000, Pst DC3000 deltahrcQ-U deltafliC and Pst DC3000 deltaavrPto deltaavrPtoB. NOTE: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:Tomato spotted wilt virus (TSWV), transmitted by small insects known as thrips, is one of the major threats to tomato productivity across the globe. In addition to tomato, this virus infects more than 1000 other plants belonging to 85 families and is a cause of serious concern. Very little, however, is known about the molecular mechanim of TSWV induced signaling in plants. Here, we used a TMT-based quantitative proteome analysis to investigate the protein profiles of tomato leaves of two cultivars (cv 2621and 2689; susceptible and resistant respectively to TSWV infection) following TSWV inoculation. This approach resulted in the identification of 5112 proteins of which 1022 showed significant changes in response to TSWV. While the proteome of resistant cultivar majorly remain unaltered, proteome of susceptible cultivar showed distint differences following TSWV infection. TSWV modulated proteins in tomato included those with functions previously implicated in plant defence incuding secondary metabolism, ROS detoxification, MAP kinase signaling, Calcium signaling and jasmonate biosynthesis, among others. Taken together, these results provide new insights into the TSWV induced signaling in tomato leaves and may be useful in future to manage this deadly disease of plants.