Project description:Transforming growth factor beta-1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGFbeta (0.4 ng/ml), or double-treated. All double-treated (IR+TGFbeta) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, beta-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, even though IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression. Keywords: response to ionizing radiation, response to transforming growth factor-beta, nonmalignant human mammary epithelial MCF10A cells, epithelial to mesenchymal transition
Project description:Transforming growth factor beta-1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGFbeta (0.4 ng/ml), or double-treated. All double-treated (IR+TGFbeta) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, beta-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, even though IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression. Experiment Overall Design: Nonmalignant human mammary epithelial MCF10A cells (passages 106 and 108) were seeded at cloning density in 35mm dishes (10^5 cells/dish). Cell culture medium consisted of 3ml/dish of MGEM serum free medium (Cambrex Inc.), supplemented or not with 400pg/ml recombinant Transforming Growth Factor-beta. Cells were irradiated or not 5h post plating using 160 KV X-ray with a total dose of 2Gy. Sham, IR-treated, TGFbeta-treated and double-treated (IR+TGFbeta) MCF10A cells were harvested 8 days post-IR. Briefly, cells were washed with PBS, denatured in Trizol, scraped off the dish and subjected to chloroform extraction. After centrifugation, the upper phase was precipitated with an equal volume of isopropanol. RNA precipitates were resuspended in RNase free water and further purified on RNeasy columns (Qiagen, Germany). RNA quality was assessed on an Agilent Bio-Analyzer. The dataset analyzed by microarray included biological duplicates for each treatment in two independent experiments and three sham treated samples. Microarray data were generated at the Lawrence Berkeley National Laboratory Molecular Profiling Laboratory (http://hta.lbl.gov) using a high-throughput, automated GeneChip system (Affymetrix). Briefly, target preparation, HT_HG-U133A array plate hybridization setup, washing and staining were performed on an Affymetrix robotic system (GCAS) using version 2.1 protocols. Scanning (protocol version 2.2.09) was performed on a CCD-based high throughput scanner (Affymetrix). Samples were analyzed and clustered with the (UNO) One Color GenetrafficTM software version 3.2-12 (Iobion Informatics LLC, Stratagene, La Jolla, CA). Genes whose expression was specifically altered by treatment were defined as those in which dye ratio was more than 1.75-fold (|mean log2ratio|>0.8) from baseline in at least three out of the four treated samples compared to the three sham samples. Significance analysis tests (p<0.05) were performed using Excel between sham samples and either IR, TGFbeta or TGFbeta+IR samples.
Project description:RATIONALE: Measuring levels of transforming growth factor-beta (TGF-beta) in the blood of patients with epithelial cancers (head and neck, lung, breast, colorectal, and prostate) may help doctors predict how patients will respond to treatment with radiation therapy.
PURPOSE: This research study is measuring levels of TGF-beta in patients with epithelial cancers who are undergoing radiation therapy.
Project description:T Cell Receptor Based Therapy of Metastatic Colorectal Cancer With mRNA-engineered T Cells Targeting Transforming Growth Factor Beta Receptor Type II (TGFβII)
Project description:Sinoatrial node (SAN), and right atrial (RA) fibroblasts were isolated from explanted non-failing (nHF) and HF human hearts, cultured, passaged once, and treated +/- transforming growth factor beta 1(TGF beta-1). Fibroblast pellets were subjected to comprehensive high-throughput proteomic analyses.
Project description:Cardiac fibrosis is a detrimental pathophysiological state involved in a number of cardiovascular diseases. Myofibroblasts mediate fibrosis by excessive remodeling of the extracellular matrix, which ultimately leads to tissue stiffness and impaired heart performance. Recently, it was shown that a substantial fraction of cardiac myofibroblasts may originate from the epicardium through Epithelial-to-Mesenchymal Transition (EMT). We have developed a cellular model of EMT in which adult murine epicardium-derived cells are differentiated into myofibroblast-like cells in the presence of Interleukin-1beta, Tumor Necrosis Factor-alpha, or Transforming Growth Factor-beta. Using this model of EMT, the microRNAome was assessed by microRNA (miRNA) arrays. Subsequently, expression levels of differentially expressed miRNAs were validated by qPCR. These miRNAs were targeted by transfecting epicardium-derived cells with anti- or pre-miRs prior to EMT initiation. The ability of the anti- or pre-miRs to inhibit EMT was assessed on a number of phenotypic markers. In this study we have identified a number of miRNAs that potentially play an intrinsic role in cardiac EMT. We speculate that by targeting those miRNA, the onset and long-term progression of cardiac fibrosis can be substantially reduced. Epicardial mesothelial cells were isolated and expanded from the epicardium of adult rats (8-10 weeks). Epithelial-to-mesenchymal Transition was induced by 10 ng/mL Interleukin-1beta, Tumor Necrosis Factor-alpha, or Transforming Growth Factor-beta1 for 48h. The assocciated differential microRNA expressions relative to a control treatment was computed by microRNA arrays. The experiment was conducted on biological quadruplicates for the control treatment and biological triplicates for cytokine treatments.
Project description:Control and RBM6-KO MCF10A-Hras cells were subjected to RNA-sequencing before and after 12hrs exposure to 5Gy ionizing radiation (IR). Transcriptome analysis revealed a subset of genes that are differentially regulated in RBM6-KO cells compared to control cells. In addition, transcriptome of RBM6-KO cells after IR showed upregulation of DNA damage genes, suggesting impaired DNA repair compared to control cells.
2021-03-23 | GSE167265 | GEO
Project description:RNA sequencing of Orbicella faveolata subjected to transforming growth factor beta manipulation and immune challenge
Project description:Expression profiling after Sox4 knockdown (KD) during epithelial to mesenchymal transition (EMT) in NMuMG reveals a significant number of genes that are transcriptionally deregulated. Gene expression profiling is performed in Sox4-ablated (siSox4) NMuMG cells. Cells transfected with siControl is used as a control. The cells were either treated with transforming growth factor-beta (TGFβ; 2ng/ml) or not.
Project description:Epithelial–mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is associated with several potentially blinding retinal diseases. Proteomic and phosphoproteomic studies were performed on human induced pluripotent stem cell-derived RPE (hiPSC-RPE) monolayers to better understand the pathways mediating RPE EMT. EMT was induced by enzymatic dissociation of RPE monolayers from their culture substrate or by co-treatment with transforming growth factor beta (TGF-β) and tumor necrosis factor alpha (TNF-α) (TGNF). The proteome and phosphoproteome were analyzed at 1 hr post EMT induction to capture early events in kinase/phosphatase signaling cascades and at 12 hrs to define early changes in protein abundance. Pathway enrichment analysis revealed that TGNF and dissociation rapidly perturbed signaling in many of the same pathways, with striking similarity in the phosphoproteome at 1 hr. Surprisingly, functions related to liver cell proliferation and hyperplasia were strongly enriched in the phosphosites altered by both treatments at 1 hr and in protein abundance changes at 12 hrs. Hepatocyte Growth Factor-cMET signaling exhibited the strongest overall enrichment in both treatments. These signaling pathways may serve as suitable targets for the development of therapeutic strategies for the inhibition of RPE EMT, and thus may be targets for inhibiting progression of several debilitating visual diseases.