Project description:Wheat seed germination is highly related to seedling survival rate and subsequent vegetative growth,and therefore directly affects the conformation of wheat yield and quality. So wheat seed germination is not only important to itself, but the whole human society. However, due to the large genome size, many studies related to wheat seed are very complex and uncompleted. Transcriptome analysis of elite Chinese bread wheat cultivar Jimai 20 may provides a comprehensive understanding of wheat seed germination. Seed germination involves in the regulation of large number of genes, whether these genes are normal activated or not is very important to seed germination. We performed microarray analysis using the Affymetrix Gene Chip to reveal the gene expression profiles in five phases of wheat cultivar Jimai 20 seed germination. Our results provide a new insights into the thoroughly metabolic changes of seed germination as well as the relationship between some significant genes.
Project description:To better undersand the effects of drought stress on wheat developing seeds, the transcription profile of early developing wheat seeds under control and drought stress conditions were comparatively analyzed by using the Affymetrix wheat geneChip. Drought stress is a major yield-limiting factor for wheat. Wheat yields are particularly sensitive to drought stress during reproductive development. Early seed development stage is an important determinant of seed size, one of the yield components. We specifically examined the impact of drought stress imposed during postzygotic early seed development in wheat. We imposed a short-term drought stress on plants with day-old seeds and observed that even a short-duration drought stress significantly reduced the size of developing seeds as well as mature seeds. Drought stress delayed the developmental transition from syncytial to cellularized stage of endosperm. Coincident with reduced seed size and delayed endosperm development, a subset of genes associated with cytoskeleton organization was misregulated in developing seeds under drought-stressed. Several genes linked to hormone pathways were also differentially regulated in response to drought stress in early seeds. Notably, drought stress strongly repressed the expression of wheat storage protein genes such as gliadins, glutenins and avenins as early as 3 days after pollination. Our results provide new insights on how some of the early seed developmental events are impacted by water stress, and the underlying molecular pathways that can possibly impact both grain size and quality in wheat.
Project description:Wheat seed germination directly affects wheat yield and quality. The wheat grains mainly include embryo and endosperm, and both play important roles in seed germination, seedling survival and subsequent vegetative growth. ABA can positively regulate dormancy induction and then negatively regulates seed germination at low concentrations. H2O2 treatment with low concentration can promote seed germination of cereal plants. Although various transcriptomics and proteomics approaches have been used to investigate the seed germination mechanisms and response to various abiotic stresses in different plant species, an integrative transcriptome analysis of wheat embryo and endosperm response to ABA and H2O2 stresses has not reported so far. We used the elite Chinese bread wheat cultivar Zhenmai 9023 as material and performed the first comparative transcriptome microarray analysis between embryo and endosperm response to ABA and H2O2 treatments during seed germination using the GeneChip® Wheat Genome Array Wheat seed germination includes a great amount of regulated genes which belong to many functional groups. ABA/H2O2 can repress/promote seed germination through coordinated regulating related genes expression. Our results provide new insights into the transcriptional regulation mechanisms of embryo and endosperm response to ABA and H2O2 treatments during seed germination
Project description:In this experiment the transcriptome reprogramming in wheat during host and nonhost interaction with Magnaporthe sp. was analyzed in a time-series approach. Seven days old wheat plants of cv. Renan were mock-inoculated or inoculated with adapted Magnaporthe isolate Br116.5 from wheat or non-adapted isolate CD180 from Pennisetum. After 6, 12, 24 and 48 hours the abaxial epidermis was sampled. Total RNA was extracted using the RNeasy Plant Mini Kit with on-column DNase digestion (Qiagen, Hilden, Germany), and hybridized to Agilent 44k oligonucleotide arrays.
Project description:Wheat seed germination is highly related to seedling survival rate and subsequent vegetative growth,and therefore directly affects the conformation of wheat yield and quality. So wheat seed germination is not only important to itself, but the whole human society. However, due to the large genome size, many studies related to wheat seed are very complex and uncompleted. Transcriptome analysis of elite Chinese bread wheat cultivar Jimai 20 may provides a comprehensive understanding of wheat seed germination. Seed germination involves in the regulation of large number of genes, whether these genes are normal activated or not is very important to seed germination. We performed microarray analysis using the Affymetrix Gene Chip to reveal the gene expression profiles in five phases of wheat cultivar Jimai 20 seed germination. Our results provide a new insights into the thoroughly metabolic changes of seed germination as well as the relationship between some significant genes. The five groups including germinating seeds were harvest at five successive phases, which were 0 (P0), 12 (P1), 24 (P2), 36 (P3), 48 (P4) hour after imbibition respectively. Three independent experiments were performed for each group.
Project description:The RNA sequencing analysis was undertaken to investigate the transcriptomic changes in adult wheat inoculated with Puccinia graminis f. sp. tritici the causal agent of stem rust disease. The project firstly aims to compare gene expression in one susceptible wheat line with two wheat lines exhibiting adult plant resistance to the stem rust. Secondly, the project aims to examine the temporal changes in gene expression in wheat after inoculation. Wheat plants was grown until maturity under greenhouse conditions. Plants were inoculated with Puccinia graminis f. sp. tritici and the flag leaf sheath sampled for RNA sequencing. The project aims to give essential insight into the adult plant resistance response in wheat to Puccinia graminis f. sp. tritici inoculation.
Project description:To better undersand the effects of drought stress on wheat developing seeds, the transcription profile of early developing wheat seeds under control and drought stress conditions were comparatively analyzed by using the Affymetrix wheat geneChip. Drought stress is a major yield-limiting factor for wheat. Wheat yields are particularly sensitive to drought stress during reproductive development. Early seed development stage is an important determinant of seed size, one of the yield components. We specifically examined the impact of drought stress imposed during postzygotic early seed development in wheat. We imposed a short-term drought stress on plants with day-old seeds and observed that even a short-duration drought stress significantly reduced the size of developing seeds as well as mature seeds. Drought stress delayed the developmental transition from syncytial to cellularized stage of endosperm. Coincident with reduced seed size and delayed endosperm development, a subset of genes associated with cytoskeleton organization was misregulated in developing seeds under drought-stressed. Several genes linked to hormone pathways were also differentially regulated in response to drought stress in early seeds. Notably, drought stress strongly repressed the expression of wheat storage protein genes such as gliadins, glutenins and avenins as early as 3 days after pollination. Our results provide new insights on how some of the early seed developmental events are impacted by water stress, and the underlying molecular pathways that can possibly impact both grain size and quality in wheat. Winter wheat cultivar Redland, PI 502907 (Triticum aestivum L.) was used for this study. Seedlings were vernalized at 4°C for 6 weeks and then transplanted to a one gallon pot of soil-sand mixture (3:1, v/v) and grown in a growth chamber under the following conditions: relative humidity, 50–70%; 16-h light/8-h dark photoperiod; 21°C daytime temperature and 18°C nights. Plants were watered regularly twice daily at the rate of 100ml/ per pot. Because, wheat has an asynchronous fertilization pattern for ovlues in the inflorescence, each floret needs to be specifically marked for timing the fertilization and stress induction. After spikes developed, unfertilized ovules were monitored and observed for the fertilization process. Closed wheat spikes with anthers outside were marked as fertilized. Drought stress was imposed 24h after the fertilization (HAF). Drought stress treatment was initiated by discontinuing watering on the drought treatment plants while control plants were regularly watered twice daily. Stress treatment was applied at 48 HAF and relieved at 96 HAF. The microarray study focuses on 24 HAF to 72 HAF in control and drought stress conditions. We started to impose drought stress 24HAF.
Project description:Wheat seed germination directly affects wheat yield and quality. The wheat grains mainly include embryo and endosperm, and both play important roles in seed germination, seedling survival and subsequent vegetative growth. ABA can positively regulate dormancy induction and then negatively regulates seed germination at low concentrations. H2O2 treatment with low concentration can promote seed germination of cereal plants. Although various transcriptomics and proteomics approaches have been used to investigate the seed germination mechanisms and response to various abiotic stresses in different plant species, an integrative transcriptome analysis of wheat embryo and endosperm response to ABA and H2O2 stresses has not reported so far. We used the elite Chinese bread wheat cultivar Zhenmai 9023 as material and performed the first comparative transcriptome microarray analysis between embryo and endosperm response to ABA and H2O2 treatments during seed germination using the GeneChip® Wheat Genome Array Wheat seed germination includes a great amount of regulated genes which belong to many functional groups. ABA/H2O2 can repress/promote seed germination through coordinated regulating related genes expression. Our results provide new insights into the transcriptional regulation mechanisms of embryo and endosperm response to ABA and H2O2 treatments during seed germination The six groups including embryo and endosperm response to pure water (CK), ABA and H2O2 were havested respectively, which were CK_embryo (CKem), CK_endosperm (CKe), ABA_embryo (ABAem), ABA_endosperm (ABAe), H2O2_embryo (H2O2em), H2O2_endosperm (H2O2e). Three independent experiments were performed for each group.