Project description:To detect salt-tolerance-related miRNAs, comparative analysis of miRNA expression profiles was performed between the salt-tolerant and -sensitive cotton cultivars in control and salt-stressed conditions (treated with 300 mM NaCl for 24 h) using microRNA microarray
Project description:Salt stress causes the quality change and significant yield loss of tomato. However, the resources of salt-resistant tomato were still deficient and the mechanisms of tomato resistance to salt stress were still unclear. In this study, the proteomic profiles of two salt-tolerant and salt-sensitive tomato cultivars were investigated to deciphered the salt-resistance mechanism of tomato and provide novel resources for tomato breeding. We found that there is an over-abundant proteins relevant to Nitrate and amino acids metabolisms in the Salt-tolerant cultivars. The significant increase in expression of proteins involved in Brassinolides and GABA biosynthesis were verified in salt-tolerant cultivars, strengthening the salt resistance of tomato. Meanwhile, salt-tolerant cultivars with higher abundance and activity of antioxidant-related proteins have more advantages in dealing with reactive oxygen species caused by salt stress. And the salt-tolerant cultivars had higher photosynthetic activity based on overexpression of proteins functioned in chloroplast, guaranteeing the sufficient nutrient for plant growth under salt stress. Furthermore, three key proteins were identified as important salt-resistant resources for breeding salt-tolerant cultivars, including Sterol side chain reductase, gamma aminobutyrate transaminase and Starch synthase. Our results provided series valuable strategies for salt-tolerant cultivars which can be used in future
Project description:The N6-methyladenosine (m6A) modification is the most common internal post-transcriptional modification, with important regulatory effects on RNA export, splicing, stability,and translation. However, the effects of m6A modifications on the resistance of sweet sorghum to salt stress remain unclear. In this study, we mapped the m6A modifications in two sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) that differ regarding salt tolerance. Dynamic changes to m6A modifications in sweet sorghum were identified in response to salt stress. Our data suggest that the differences in the m6A modifications between salt-tolerant and salt-sensitive sweet sorghum might contribute to the diversity in salt tolerance.
Project description:To detect salt-tolerance-related miRNAs, comparative analysis of miRNA expression profiles was performed between the salt-tolerant and -sensitive cotton cultivars in control and salt-stressed conditions (treated with 300 mM NaCl for 24 h) using microRNA microarray Total RNA was extracted from (1) the seedling of salt-tolerant cotton cultivar in normal growth conditions, (2) the seedling of salt-tolerant cotton cultivar in salt-stressed growth conditions, (3) the seedling of salt-sensitive cotton cultivar in normal growth conditions, and (4) the seedling of salt-sensitive cotton cultivar in salt-stressed growth conditions. Then, the low-molecular-weight RNA (LMW-RNA) was isolated using the PEG solution precipitation method and used to hybridization.
Project description:Leaves and roots were used to identify the differentially abundant protein species between salt-stress and control conditions in beta vulgaris. The experimental material was a salt-tolerant beet strain 'o68'.Salt treatment was carried out by gradual salt feeding. Samples were collected at 24h after the concentration reached 300mM.
Project description:Salt stress has become one of the main abiotic stress factors restricting agricultural production worldwide. Sweet sorghum is an important salt and drought tolerant feed and energy crop. Its salt tolerance mechanism has not been widely studied. With the development of transcriptome sequencing technology, it is possible to study the molecular mechanism of sweet sorghum salt tolerance. The purpose of this study was to further reveal the potential salt-tolerant molecular mechanisms of sweet sorghum through high-throughput sequencing analysis of the transcriptome. Finally, through high-throughput sequencing, we read approximately 54.4G of raw base and 53.7G of clean base in total, and used FastQC to assign a quality score (Q) to each base in the read using a similar phred algorithm, Analysis shows that the data is highly credible. We conclude that RNA-based transcriptome characterization will accelerate the study of genetics and molecular biology of sweet sorghum salt tolerance mechanisms and provide a framework for this.
Project description:With the growing limitations on arable land, alfalfa (a widely cultivated, low-input forage) is now being selected to extend cultivation into saline lands for low-cost biofeedstock purposes. Here, minerals and transcriptome profiles were compared between two new salinity-tolerant North American alfalfa breeding populations and a more salinity-sensitive Western Canadian alfalfa population grown under hydroponic saline conditions. All three populations accumulated two-fold higher sodium in roots than shoots as a function of increased electrical conductivity. At least 50% of differentially expressed genes (p < 0.05) were down-regulated in the salt-sensitive population growing under high salinity, while remaining unchanged in the saline-tolerant populations. In particular, most reduction in transcript levels in the salt-sensitive population were observed in genes specifying cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signalling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. Transcript diversity for transcription factors, protein modification, and protein degradation genes was also more strongly affected in salt-tolerant CW064027 than in salt-tolerant Bridgeview and salt-sensitive Rangelander, while both saline-tolerant populations showed more substantial up-regulation in redox-related genes and B-ZIP transcripts. The report highlights the first use of bulked genotypes as replicated samples to compare the transcriptomes of obligate out-cross breeding populations in alfalfa. Three lines of Alfalfa (salt-tolerant CW064027, salt-tolerant Bridgeview, salt-sensitive Rangelander) were grown on 3 different concentrations of salt. For each cultivar-salt condition, 3 biological replicates were collected for a total of 27 samples.
Project description:Salt Stress response of salt-tolerant genotype FL478 compared to IR29 Rice GeneChip was used to find differential expression between two rice genotypes under control and salt stress conditions Keywords: genotype and treatment comparison