Project description:Transgenic tobacco (Nicotiana tabacum) expressing Caenorhabditis elegans cell death genes, Ced4 and Ced3, show evidence suggesting such expressions protect the plants from infestation by the plant parasitic nematode Meloidogyne incognita. Although positive results have been correlated with the gene expressions (data in preparation for publication; a draft of the publication can be provided upon request), the mechanism by which the nematode protection is manifested is not clearly understood. One possibility is that the C. elegans cell death proteins produced by the transgenic plants are being ingested and incorporated into the nematode’s own cell death pathway, leading to their demise. Alternatively, it is also possible that expression of the C. elegans cell death genes promotes the endogenous resistance genes of the plant, leading to nematode resistance. We want to test the later hypothesis by conducting a reference design microarray experiment to establish the expression profile of Ced3, and Ced4 homozygous plants and Ced3xCed4 double heterozygous plants in comparison with wild-type tobacco plants. If the hypothesis is correct, we expect to detect increased expression of pathogenicity-related genes in the transgenic plants. Furthermore, characterization of the expression profiles in these transgenic plants will provide us directionality for our future research on the elucidation of this resistance mechanism. Keywords: Reference design 27 hybs total
Project description:Transgenic tobacco (Nicotiana tabacum) expressing Caenorhabditis elegans cell death genes, Ced4 and Ced3, show evidence suggesting such expressions protect the plants from infestation by the plant parasitic nematode Meloidogyne incognita. Although positive results have been correlated with the gene expressions (data in preparation for publication; a draft of the publication can be provided upon request), the mechanism by which the nematode protection is manifested is not clearly understood. One possibility is that the C. elegans cell death proteins produced by the transgenic plants are being ingested and incorporated into the nematode’s own cell death pathway, leading to their demise. Alternatively, it is also possible that expression of the C. elegans cell death genes promotes the endogenous resistance genes of the plant, leading to nematode resistance. We want to test the later hypothesis by conducting a reference design microarray experiment to establish the expression profile of Ced3, and Ced4 homozygous plants and Ced3xCed4 double heterozygous plants in comparison with wild-type tobacco plants. If the hypothesis is correct, we expect to detect increased expression of pathogenicity-related genes in the transgenic plants. Furthermore, characterization of the expression profiles in these transgenic plants will provide us directionality for our future research on the elucidation of this resistance mechanism. Keywords: Reference design
Project description:Transcriptome profiling of three developmental stages of immature male gametophyte intobacco (Nicotiana tabacum) Total RNA isolated from tobacco microspores and early and late bicellular pollen was hybridised on Agilent Tobacco Gene Expression Microarray 4x44K in two biological replicates per sample
Project description:Genetically engineering Nicotiana tabacum to express Isoprene Synthase (ISPS) leads to changes in expression of genes assoiated with many growth regulator signaling pathways and signaling networks involved in abiotic and biotic stress responses.