Project description:Drought is one of the most crucial environmental stresses limiting faba bean growth and productivity in the Mediterranean region. In order to explore how the faba bean plant responds to drought stress, a physiological and proteomic analysis was performed in leaf tissue. All physiological parameters were affected by drought. The physiological mechanism underlying the response of faba bean leaves to drought was therefore attributed to the alleviation of oxidative stress via the accumulation of organic solutes such as proline and to the synergistic action of the antioxidant enzyme system (CAT, SOD, APX and GPOX). Proteomic analysis identified 2000 proteins from faba bean leaves, of which were 81 differentially expressed. Of those, 45 were upregulated and 36 were downregulated under drought treatment. GO and KEGG enrichments indicated differentially abundant proteins (DAPs) associated with photosynthesis, antioxidants/detoxifying enzymes, molecular chaperones, biosynthesis of amino acids and secondary metabolites, signal transduction, energy and carbohydrate metabolism and metabolic enzymes. The current results provide evidence for a complex synergetic pathway, in which ROS detoxification mechanisms and photoprotection constituted the major aspect of drought tolerance in faba bean leaves. These results offer a foundational basis regarding the molecular mechanism involved in drought resistance within the faba bean species
Project description:In the present study, a faba bean protein isolate (wBPC) with almost ~80 % crude protein produced by a wet process was investigated in feeds for Atlantic salmon in seawater. Four dietary treatments were tested including one treatment with high inclusion of fishmeal (400 g kg-1, named FM) and three treatments with low fishmeal (216 g kg-1) and increasing inclusions of faba bean protein concentrate (0, 70 and 140 g kg-1) substituting soy protein concentrate (236, 125 and 45 g kg-1), named SPC, BPC7 and BPC14 respectively.
Project description:High-quality sources of protein for the formulation of feeds of carnivorous fish species such as Atlantic salmon are currently being sought. In an earlier screening trial we evaluated for the first time in Atlantic salmon (Salmo salar) the applicability of air-classified faba bean (Vicia faba) protein concentrate (BPC) inclusions in combination with soy protein concentrate (SPC) and fishmeal (FM) using parr as a model. Based on the results in parr in freshwater, the present study tested the hypothesis that BPC can effectively replace SPC as a dietary protein source in post-smolt Atlantic salmon in seawater. Herein we compare three dietary treatments, including BPC0 (no BPC), BPC20 (20% BPC) and BPC40 (40% BPC). Full details on diet formulation are available in the publication.
Project description:Bacterial endophytes were isolated from nodules of pea and faba bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilisation, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and three strains of Serratia plymuthica were considered as potential Plant Growth-Promoting Bacteria, able to support plant development in saline soils. In order to shed light on the mechanisms underlying salt tolerance, the proteome of the two most performant strains (Ra4 and Sp2) grown in presence or not of salt was characterized. The amount of protein expressed by the endophytes was higher in presence of salt. The modulated proteome was composed by 302 (100 up-regulated, 202 down-regulated) and by 323 (206 up-regulated, 117 down-regulated) in Ra4 and Sp2, respectively. Overall, proteins involved in abiotic stress responses were up-regulated, while those involved in metabolism and flagellum structure were down-regulated. The main up-regulated proteins in Sp2 was thiol:disulfide interchange protein DsbA, required for the sulphur binding formation in periplasmic proteins, while in Ra4 corresponded to the soluble fraction of ABC transporters, having a role in compatible solute uptake. Our results demonstrated a conserved response to salt stress in two taxonomically correlated species.