Project description:Iron-resistant Saccharomyces cerevisiae mutant was obtained by evolutionary engineering selection strategy. The mutant obtained “M8FE” is much more resistant to iron stress than the reference strain which was used to select this mutant. Mutant can resist up to 35mM Iron* stress whereas the reference strain cannot. Whole-genome microarray analysis might be promising to identify the iron resistance mechanisms and stress response upon high levels of iron in the yeast cells. Iron-resistant mutant is also cross resistant to Cobalt, Chromium and Nickel but sensitive to Zinc. * refers to [NH4]2[Fe][SO4]2 and FeCl2.
Project description:Iron-resistant Saccharomyces cerevisiae mutant was obtained by evolutionary engineering selection strategy. The mutant obtained M-bM-^@M-^\M8FEM-bM-^@M-^] is much more resistant to iron stress than the reference strain which was used to select this mutant. Mutant can resist up to 35mM Iron* stress whereas the reference strain cannot. Whole-genome microarray analysis might be promising to identify the iron resistance mechanisms and stress response upon high levels of iron in the yeast cells. Iron-resistant mutant is also cross resistant to Cobalt, Chromium and Nickel but sensitive to Zinc. * refers to [NH4]2[Fe][SO4]2 and FeCl2. The reference Saccharomyces cerevisiae strain and the iron-resistant mutant were grown in minimal medium to an Optical Density (OD600) of 1.00 which correspond to the logarithmic growth phase of the yeast cells. Cultures were harvested and whole RNA isolation was carried out. The experiment was repeated three times.
Project description:We have employed whole genome microarray expression profiling as a discovery platform to identify genes implicated in the resistance to cobalt in Saccharomyces cerevisiae. The evolved strains and the wild type were harvested in exponential phase
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:Reactive oxygen species, generated in vivo or exogenously encountered, constantly challenge living organisms. Oxidation of polyunsaturated fatty acids (PUFA), which are susceptible to oxidant attack, can lead to initiation of lipid peroxidation and in turn rapid production of toxic lipid hydroperoxides. Eukaryotic microorganisms such as Saccharomyces cerevisiae can survive harsh industrial conditions that contain high levels of the PUFA linoleic acid and its oxidised derivative, linoleic acid hydroperoxide (LoaOOH). The precise signalling and response mechanisms induced by yeast to overcome lipid hydroperoxide stress are ill understood. We used genome-wide microarrays to investigate the changes in gene expression of S. cerevisiae to LoaOOH-induced oxidative stress.
Project description:Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. Keywords: time course
Project description:Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalnace between reactive oxygen species and other oxidants and the capacity of antioxidant defense systems to remove them. The budding yeast S. cerevisiae has been the major eukaryotic model for studies of response to oxidative stress. We used microarrays to study the genome-wide temporal response of the yeast S. cerevisiae to oxidative stress induced by cumene hydroperoxide. Keywords: time course
Project description:In this study we investigated the transcriptional response of the yeast Saccharomyces cerevisiae to potassium starvation. To this end yeast cells were grown for 60 min in media without potassium or in media with a standard potassium concnetration (50 mM KCl). Using Serial Analysis of Gene Expression (SAGE)-tag sequencing the effect of potassium starvation on the transcriptome was determined.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.