Project description:Purpose: Soybean aphid (Aphis glycines Matsumura; SBA) is major pest of soybean (Glycine max) in the United States of America. One previous study on soybean, soybean-aphid interactions showed that avirulent (biotype 1) and virulent (biotype 2) biotypes can co-occur and potentially interact on resistant and susceptible soybean resulting induced susceptibility. The main objective of this research was to employ RNA sequencing technique to characterize the induced susceptibility effect in which initial feeding by virulent aphids can increase the suitability of avirulent aphids in both susceptible and resistant cultivars. Methods: The data in this submission come from the green house experiment using two genotypes of soybean: susceptible soybean cultivar was LD12-15838R and the resistant cultivar was LD12-15813Ra (with Rag1 gene) and two aphid populations: biotype 1 (avirulent) and biotype 2 (virulent biotype 2). RNA was extracted from the leave samples from resistant and susceptible cultivars treated with no aphids, biotype 2: biotype1 collected at day 1 and no aphids, biotype 2: biotype1 and no aphids: biotype1 at day 11 using PureLink RNA mini kit (Invitrogen, USA). RNA samples were treated with TURBOTM DNase (Invitrogen, USA) to remove any DNA contamination following the manufacturer’s instructions. Assessment of the isolated RNA integrity was performed by 1% agarose gel electrophoresis, and RNA concentration was measured by Nanodrop 2000 (Thermo Fisher Scientific, USA). Three replicates from these treatments in resistant and susceptible cultivars were pooled in equimolar concentration. RNAseq library construction was prepared using Illumina’s TruSeq Stranded mRNA Kit v1 (San Diego, CA). The libraries were quantified by QuBit dsDNA HS Assay (Life Technologies, Carlsbad, CA) and pooled in equimolar concentrations. The libraries were sequenced on an Illumina NextSeq 500 using a NextSeq 500/550 High Output Reagent Cartridge v2 (San Diego, CA) at 75 cycles. Results: A total of 10 RNA libraries were prepared and sequenced with the sequencing depth ranging from 24,779,816 to 29,72,4913. Total reads of 266,535,654 were subjected to FastQC analysis to determine the data quality using various quality metrics such as mean quality scores, per sequence quality scores, per sequence GC content, and sequence length distribution. The phred quality scores per base for all the samples were higher than 30. The GC content ranged from 45 to 46% and followed the normal distribution. After trimming, more than 99% of the reads were retained as the clean and good quality reads. Upon mapping these reads, we obtained high mapping rate ranging from 90.4% to 92.9%. Among the mapped reads, 85.8% to 91.9% reads were uniquely mapped. Conclusions: The objective of this study is to characterize the mechanism of induced susceptibility in soybean via transcriptional response study of soybean in presence of biotype 1 and biotype 2 soybean aphids using RNA-Seq. The data resulted from this study might provide insights into the interactions between soybean and soybean aphids and identify genes, their regulation and enriched pathways that may be associated with resistance or susceptibility to A. glycines.
Project description:Bioinformatic prediction, deep sequencing of microRNA and expression analysis during phenotypic plasticity in the pea aphid acyrthosiphon pisum We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode.
Project description:This study provides evidence that aphid lncRNAs play a role in regulating aphid-plant interactions and at least one M. persicae lncRNA is a virulence factor
Project description:This study provides evidence that aphid lncRNAs play a role in regulating aphid-plant interactions and at least one M. persicae lncRNA is a virulence factor
Project description:The aim for this study was to compare the differences in the methylome of 2 Russian wheat aphid biotypes that are genealogically linked, but at opposite ends of the virulence scale. We studied genic as well as intergenic methylation in all three available contexts in the Bismark pipeline, CpG, CHG and CHH. We were also interested to see how methylation patterns in the Russian wheat aphid compares to that of other investigated insects. Specifically the ratio of genic to intergenic methylation and to what extent contexts other than CpG are methylated. Grant number: CPR20110615000019459 Funding body: National Science Foundation ZA Grantholders name: Anna-Maria Botha-Oberholster
Project description:Myzus persicae (green peach aphid) feeding on Arabidopsis thaliana induces a defense response, quantified as reduced aphid progeny production, in infested leaves but not in other parts of the plant. Similarly, infiltration of aphid saliva into Arabidopsis leaves causes only a local increase in aphid resistance. Further characterization of the defense-eliciting salivary components indicates that Arabidopsis recognizes a proteinaceous elicitor with a size between 3 to 10 kD. Genetic analysis using well-characterized Arabidopsis mutant shows that saliva-induced resistance against M. persicae is independent of the known defense signaling pathways involving salicylic acid, jasmonate, and ethylene. Among 78 Arabidopsis genes that were induced by aphid saliva infiltration, 52 had been identified previously as aphid-induced, but few are responsive to the well-known plant defense signaling molecules salicylic acid and jasmonate. Quantitative PCR analysis confirms expression of saliva-induced genes. In particular, expression of a set of O-methyltransferases, which may be involved in the synthesis of aphid-repellent glucosinolates, was significantly up-regulated by both M. persicae feeding and treatment with aphid saliva. However, this did not correlate with increased production of 4-methoxyindol-3-ylmethylglucosinolate, suggesting that aphid salivary components trigger an Arabidopsis defense response that is independent of this aphid-deterrent glucosinolate.
Project description:Investigation of whole genome gene expression level changes in the phytopathogenic Dickeya dadantii wild-type strain 3937 during an acute per os infection of an aphid body, in comparison with a colony grown in standard LB medium. The pathosystem described in this study has been analysed and first published in Grenier et al. 2006, and further detailed in Costechareyre et al. 2011 A two chip study using total RNA recovered from three separate (aphid-, or in vitro-grown) samples