Project description:Leishmania amazonensis is a protozoan that primarily infects macrophages and causes cutaneous leishmaniasis in humans. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at posttranscriptional levels. Previous work demonstrated changes in miRNA profile of host cells favoring parasite survivel. Thus, here we demonstrate that human macrophages upregulate several miRNAs on the initial time points of infection, including the hsa-miR-372, hsa-miR-373, and hsa-miR-520d, which present the same seed. Further functional analysis demonstrated that inhibition of the miR-372 impaired Leishmania survival in THP-1 macrophages and the effect was further enhanced with combinatorial inhibition of the miR-372/373/520d family, pointing to a cooperative mechanism. Our study demonstrated miRNA-dependent modulation of polyamines production, establishing permissive conditions for intracellular parasite survival.Our findings suggest that the miR-372/373/520d family may represent a potential target for the development of new therapeutic strategies against cutaneous leishmaniasis.
Project description:Differentially regulated miRNA candidates in H37Rv infected THP-1 cells were analysed with respect to uninfected THP-1 reference samples. THP-1 cells are monocytes differentiated to macrophages after treatment with PMA for 48 hrs. Total RNA was isolated from infected THP-1 cells after 24 hrs of infection, cDNA was synthesized for TLDA real time PCR reaction using TaqMan MicroRNA Reverse Transcription kit and Megaplex Human Pool A and Pool B stem loop RT primers (version 3.0) as per manufacturer’s protocol. Further real time reaction was performed on QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems) by using cDNA (without pre-amplification) on TLDA card A and card B (version 3.0).
Project description:We studied the role of microRNAs specifically upregulated in THP-1 cells following a 14 hours resveratrol treatment (50 micromolar).
Project description:Autophagy has been implicated as a host defense mechanism against intracellular pathogens. However, certain intracellular pathogens such as Leishmania can manipulate the host’s autophagy to promote their survival. Recently, our findings regarding the regulation of autophagy by Leishmania donovani indicate that this pathogen induces non-classical autophagy in infected macrophages, independent of mammalian target of rapamycin complex 1 regulation. This occurs in the background of enhanced mTOR activity, which suggests the fine-tuning of autophagy to optimally promote parasite survival and may involve the sequestration or modulation of specific autophagosome-associated proteins. To investigate how Leishmania potentially manipulates the composition of host-cell autophagosomes, we undertook a quantitative proteomic study of the human monocytic cell line THP-1 following infection with L. donovani. We used stable isotope labeling by amino acid in cell culture and liquid chromatography-tandem mass spectrometry to compare expression profiles between autophagosomes isolated from THP-1 cells infected with L. donovani or treated with known autophagy inducers. Select proteomics results were validated by immunoblotting. In this study, we showed that L. donovani modulates the composition of macrophage autophagosomes during infection when compared to autophagosomes induced by either rapamycin (selective autophagy) or starvation (non-selective autophagy). Among 1787 proteins detected in Leishmania-induced autophagosomes, 146 were significantly modulated compared to the proteome of rapamycin-induced autophagosomes while 57 were significantly modulated compared to starvation-induced autophagosomes. Strikingly, 23 Leishmania proteins were also detected in the proteome of Leishmania-induced autophagosomes. Together, our data provide the first comprehensive insight into the proteome dynamics of host autophagosomes in response to Leishmania infection and demonstrate the complex relations between the host and pathogen at the molecular level.
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards.
Project description:Murine bone marrow derived macrophages were infected with Leishmania major or Leishmania donovania promastigotes, allowed to phagocytose latex beads or not treated. Gene expression profiles were compared to identify i) the effect of Leishmania infection; ii) the differences in effects between L. major and L. donovani; and iii) the effect of pahgocytosis of latex beads.
Project description:The genomic DNAs of strains JPCM5 and 263 of L. infantum, strains LV39 and Friedlin of L. major and strains Parrot-TarII and S125 of L. tarentolae were used in comparative genomic hybridizations to reveal the intra-species and inter-species gene content, and to validate L. tarentolae Parrot-TarII genome sequencing results. Leishmania (Sauroleishmania) tarentolae was first isolated in the lizard Tarentola mauritanica. This species is not known to be pathogenic to humans but is often used as a model organism for molecular analyses or protein overproduction. The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved by high-throughput sequencing technologies. The L. tarentolae genome was first assembled de novo and then aligned against the reference L. major Friedlin genome to facilitate contig positioning and annotation, providing a 23-fold coverage of the genome. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described, and it provides an opportunity for comparison with the completed genomes of the pathogenic Leishmania species. A high synteny was observed in de novo assembled contigs between all sequenced Leishmania species. A number of limited chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic with L. major. Globally, over 90% of the L. tarentolae gene content was shared with the other Leishmania species. There were 250 L. major genes absent from L. tarentolae, and interestingly these missing genes were primarily expressed in the intracellular amastigote stage of the pathogenic parasites. This implies that L. tarentolae may have impaired ability to survive as an intracellular parasite. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the leishmanolysin (GP63) and a gene related to the promastigote surface antigen (PSA31C). Overall, L. tarentolae appears to have a gene content more adapted to the insect stage rather than the mammalian one. This may partly explain its inability to replicate within mammalian macrophages and its suspected preferred life style as promastigote in the lizards. Six strains of three Leishmania species were hybridizated to 12 microarrays, each with four biological replicates (independent cultures). Supplementary file: Represents final results obtained after statistical analysis of all replicates.
Project description:H1299 cells were overexpressed miR-138 or silenced AGO2. The expression of 92 genes associated with p53 using the “Human p53 Signaling Pathway PCR Array” qPCR gene expression profiling. H1299 cells were transfected with NC mimics, AGO2 siRNA or miR-138 for 48h. Equal amount total RNA from each group was pooled prior to gene expression analysis.