Project description:Effect of phenobarbital on Sf9 cell cultures genes expression. RNA from phenobarbital treated Sf9 cell cultures were compared to control treated (DMSO) Sf9 cell
Project description:Triple Negative Breast Cancer (TNBC) is an aggressive subtype of breast cancer with high intra-tumoral heterogeneity, frequently resistant to treatment and no known targeted therapy available to improve patient outcomes. It has been hypothesized that the genomic architecture of a TNBC tumour evolves over time, both before, and during therapy, leading to therapy resistance and a high propensity to relapse. Whether this is an inherent property of the tumour or acquired over time is not well characterized. Despite this important clinical implication, limited studies have been carried out to unravel temporal evolution of TNBC over time. Herein, we report an OMICS based analysis of three TNBC patients who were longitudinally sampled during their treatment at different times of relapse. We recruited three TNBC patients at the time of their first relapse who were then followed-up through the course of their treatment. We obtained retrospective samples (tumour samples) from patient tumours at diagnosis (before neo-adjuvant chemotherapy - NACT) at surgery (post NACT) and prospectively sampled them at each subsequent relapse (tumour, blood plasma, and buffy coat) as determined by RECIST criteria. Tumor and buffy coat DNA were subjected to whole exome sequencing (WES) at 200x, and SNP arrays for copy number variation (CNV) analysis. RNA from tumour samples at relapse was subjected to whole transcriptome sequencing. Pathogenic germline BRCA1 variants identified in WES were validated using Sanger sequencing. 1084 somatic mutations identified in whole exome sequencing of all tumour tissues (n=13) from three patients, were subjected to a custom amplicon ultra-deep sequencing assay at 30,000X in their germline DNA (n=3), tumour DNA (n=10), and cfDNA from plasma samples at relapse (n=8). Copy number corrected allele frequencies, tumour ploidy, tumour purity, and ultra-deep sequencing assay derived variant allele frequencies were used to infer clonal and phylogenetic architecture of each patient as it evolved under selective pressure of therapy over time. Clonality analysis incorporating allele fractions from ultra-deep sequencing identified clones comprising of mutations that are present throughout the course of therapy which we term as founding clones and stem mutations respectively. Such founding clones comprising of stem mutations in all 3 patients were present throughout the course of treatment, irrespective of change in treatment modalities. These stem clones included well characterized cancer related genes like PDGFRB & ARID2 (Patient 02), TP53, BRAF & CSF3R (Patient 04) and ESR1, APC, EZH2 & TP53 (Patient 07). Such branching evolution is seen in all three patients wherein the dominant clone (stem clone) acquires additional mutations to form sub-clones, while persisting over time. These sub-clones may be chemo and radio resistant, while also providing for organ specific metastatic potential. Allele fractions of expressed variants inferred from RNA-Seq data co-related with allele fractions from WES data indicating that all somatic.
Project description:Triple Negative Breast Cancer (TNBC) is an aggressive subtype of breast cancer with high intra-tumoral heterogeneity, frequently resistant to treatment and no known targeted therapy available to improve patient outcomes. It has been hypothesized that the genomic architecture of a TNBC tumour evolves over time, both before, and during therapy, leading to therapy resistance and a high propensity to relapse. Whether this is an inherent property of the tumour or acquired over time is not well characterized. Despite this important clinical implication, limited studies have been carried out to unravel temporal evolution of TNBC over time. Herein, we report an OMICS based analysis of three TNBC patients who were longitudinally sampled during their treatment at different times of relapse. We recruited three TNBC patients at the time of their first relapse who were then followed-up through the course of their treatment. We obtained retrospective samples (tumour samples) from patient tumours at diagnosis (before neo-adjuvant chemotherapy - NACT) at surgery (post NACT) and prospectively sampled them at each subsequent relapse (tumour, blood plasma, and buffy coat) as determined by RECIST criteria. Tumor and buffy coat DNA were subjected to whole exome sequencing (WES) at 200x, and SNP arrays for copy number variation (CNV) analysis. RNA from tumour samples at relapse was subjected to whole transcriptome sequencing. Pathogenic germline BRCA1 variants identified in WES were validated using Sanger sequencing. 1084 somatic mutations identified in whole exome sequencing of all tumour tissues (n=13) from three patients, were subjected to a custom amplicon ultra-deep sequencing assay at 30,000X in their germline DNA (n=3), tumour DNA (n=10), and cfDNA from plasma samples at relapse (n=8). Copy number corrected allele frequencies, tumour ploidy, tumour purity, and ultra-deep sequencing assay derived variant allele frequencies were used to infer clonal and phylogenetic architecture of each patient as it evolved under selective pressure of therapy over time. Clonality analysis incorporating allele fractions from ultra-deep sequencing identified clones comprising of mutations that are present throughout the course of therapy which we term as founding clones and stem mutations respectively. Such founding clones comprising of stem mutations in all 3 patients were present throughout the course of treatment, irrespective of change in treatment modalities. These stem clones included well characterized cancer related genes like PDGFRB & ARID2 (Patient 02), TP53, BRAF & CSF3R (Patient 04) and ESR1, APC, EZH2 & TP53 (Patient 07). Such branching evolution is seen in all three patients wherein the dominant clone (stem clone) acquires additional mutations to form sub-clones, while persisting over time. These sub-clones may be chemo and radio resistant, while also providing for organ specific metastatic potential. Allele fractions of expressed variants inferred from RNA-Seq data co-related with allele fractions from WES data indicating that all somatic.
Project description:Small nucleolar RNAs (snoRNA) function in guiding 2'-O-methylation and pseudouridylation of ribosomal RNAs. But we found that knock down of a C/D box snoRNA, Bm-15, can induce apoptosis of insect Spodoptera frugiperda Sf9 cells. For the genome sequence of Spodoptera frugiperda is incomplete, here with the de novo sequencing method, transcriptome of Spodoptera frugiperda cell line Sf9 were sequenced after being transfected with overexpression vector and repression probes of snoRNA Bm-15. Results showed that 21 apoptosis-related genes were up-regulated upon Bm-15 inhibition and down-regulated with Bm-15 overexpression.
Project description:We provide an annotated cDNA clone collection which is particularly suitable for transcriptomic analysis in the mouse brain. Using it on microarrays, we compared the transcriptome of EGFP positive and negative cells in a parvalbumin-egfp transgenic background and showed that more than 30 % of clones are differentially expressed. Our clone collection will be a useful resource for the study of the transcriptome of single cell types. Keywords: Cell type comparison