Project description:Analysis and comparison of the metabolomic profile of fermented pollen (colected by Melipona quadrifasciata stingless bee), fermented feed (mixture of fermented pollen with bran to feed Melipona quadrifasciata stingless bee) and bran (used in the mixture with fermented pollen). The abbreviations that name the raw files are:
T7 - Fermented feed.
POLEN - Fermented pollen.
CTRL - Bran.
FALSA - False organic solvent used (HPLC grade MeOH) and equipment system (UHPLC-HRMS).
Project description:Venoms have convergently evolved in all major animal lineages and are ideal candidates to unravel the underlying genomic processes of convergent trait evolution. However, few animal groups have been studied in detail, and large-scale comparative genomic analyses to address toxin gene evolution are rare. Hyper-diverse hymenopterans are the most speciose group of venomous animals, but the origin of their toxin genes have been largely overlooked. We combined proteo-transcriptomics with comparative genomics compiling an up-to-date list of core bee venom proteins to investigate the origin of 11 venom genes in 30 hymenopteran genomes including two new stingless bees.
Project description:Venoms have convergently evolved in all major animal lineages and are ideal candidates to unravel the underlying genomic processes of convergent trait evolution. However, few animal groups have been studied in detail, and large-scale comparative genomic analyses to address toxin gene evolution are rare. Hyper-diverse hymenopterans are the most speciose group of venomous animals, but the origin of their toxin genes have been largely overlooked. We combined proteo-transcriptomics with comparative genomics compiling an up-to-date list of core bee venom proteins to investigate the origin of 11 venom genes in 30 hymenopteran genomes including two new stingless bees.
Project description:The common Eastern bumble bee Bombus impatiens is native to North America and is the main commercially reared pollinator in the Americas. There has been extensive research on this species related to its social biology, applied pollination, and genetics. The genome of this species was previously sequenced using short-read technology, but recent technological advances provide an opportunity for substantial improvements. This species is common in agricultural and urban environments, and heavy metal contaminants produced by industrial processes can negatively impact it. To begin to identify possible mechanisms underlying responses to these toxins, we used RNA-sequencing to examine how exposure to a cocktail of four heavy metals at field-realistic levels from industrial areas affected B. impatiens worker gene expression.