Project description:Transcriptional profiling of MIT knockdown plants. MIT is a mitochondrial Fe transporter essential for rice growth and development. The goal was to determine the effects of MIT on global rice gene expression.
Project description:In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.
Project description:Fairy rings are zones of stimulated grass growth by the interaction between the fungi and the plant. In the previous research, we reported the identification of the “fairy”, 2-azahypoxanthine (AHX), produced by the fairy ring-forming fungus and the mechanism of its growth-promoting activity using DNA microarray. We discovered AOH, a common metabolite of AHX in plants. We investigate expression profiling of rice seedlings treated with AHX or AOH for the mechanism of their growth-promoting activity.
Project description:To reveal the underlying molecular mechanism of jasmonate inhibits gibberellins signaling in rice, we performed transcriptional profiling of wild type nipponbare and mutant coi1-13 plants on a global scale using the Affymetrix GeneChip Rice Genome Array
Project description:Transcriptional profiling of MIT knockdown plants. MIT is a mitochondrial Fe transporter essential for rice growth and development. The goal was to determine the effects of MIT on global rice gene expression. Control condition experiment, root or shoot of WT vs. MIT knockdown plant. Two replicates each comparison, including a dye swap.
Project description:Fairy rings are zones of stimulated grass growth by the interaction between the fungi and the plant. In the previous research, we reported the identification of the M-bM-^@M-^\fairyM-bM-^@M-^], 2-azahypoxanthine (AHX), produced by the fairy ring-forming fungus and the mechanism of its growth-promoting activity using DNA microarray. We discovered AOH, a common metabolite of AHX in plants. We investigate expression profiling of rice seedlings treated with AHX or AOH for the mechanism of their growth-promoting activity. Three-condition experiment, control vs. AHX-treated rice (50 and 200 mM) and AOH-treated rice (50 and 200 mM).
Project description:Here, we present OryzaPG-DB, a rice proteome database based on shotgun proteogenomics, which incorporates the genomic features of experimental shotgun proteomics data. This version of the database was created from the results of 27 nanoLC-MS/MS runs on a hybrid ion trap-orbitrap mass spectrometer, which offers high accuracy for analyzing tryptic digests from undifferentiated cultured rice cells. Peptides were identified by searching the product ion spectra against the protein, cDNA, transcript and genome databases from Michigan State University, and were mapped to the rice genome. Approximately 3200 genes were covered by these peptides and 40 of them contained novel genomic features. Users can search, download or navigate the database per chromosome, gene, protein, cDNA or transcript and download the updated annotations in standard GFF3 format, with visualization in PNG format. In addition, the database scheme of OryzaPG was designed to be generic and can be reused to host similar proteogenomic information for other species. OryzaPG is the first proteogenomics-based database of the rice proteome, providing peptide-based expression profiles, together with the corresponding genomic origin, including the annotation of novelty for each peptide.
Project description:Cross-kingdom molecular exchange between hosts and interacting microbes is essential for the survival of both plants and their pathogens. Recent studies showed plants transfer their small RNAs (sRNAs) and massager RNAs (mRNAs) into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogen cells remains unknown. Here, we show that rice plants send defense proteins into the fungal pathogen Rhizoctonia solani via extracellular vesicles (EVs). These vesicles enrich host defense proteins and are taken up by the fungal cells. Reducing EV-mediated host protein transfer leads to increased disease susceptibility. Thus, plants send defense proteins via EVs into fungal pathogens to combat infection, providing a mechanism of protein exchange between plants and pathogens that helps reduce crop disease.