Project description:Suitability of CATMA for the analysis of the transcriptome of Thellungiella halophila - flower/leaf transcriptomic comparison in Arabidopsis and Thellungiella. adt09-01_thellungiella - thelungiella
Project description:This dataset contains the transcriptome sequence of Zostera marina as produced by Illumina sequencing. Four tissues were sequenced, female flower in late and early stages of development, the male flower, the root and leaf tissue.
Project description:Rhododendron is well known woody plant, as having high ornamental and economic values. Heat stress is one of the important environmental stresses that effects Rhododendron growth. Recently, melatonin was reported to alleviate abiotic stress in plants. However, the role of melatonin in Rhododendron is still unknown. In the present study, the effect of melatonin on Rhododendron under heat stress and the potential mechanism was investigated. Through morphological characterization and chlorophyll a fluorescence analysis, 200µM was selected for the best melatonin concentration to mitigate heat stress in Rhododendron. To reveal the mechanism of melatonin priming alleviating the heat stress, the photosynthesis indexes, Rubisco activity and ATP content were detected in 25 ℃, 35 ℃ and 40 ℃. The results showed that melatonin improves electron transport rate (ETR), PSII and PSI activity, Rubisco activity and ATP content under high temperature stress. Furthermore, transcriptome analysis showed that a significant enrichment of differentially expressed genes in the photosynthesis pathway, and most of genes in photosynthesis pathway displayed a more significantly slight down-regulation under high temperature stress in melatonin-treatment plants, compared with melatonin-free plants. We identified PGR5……Together, these results demonstrate that melatonin could promote the photosynthetic electron transport, improve the enzymes activities in Calvin cycle and the production of ATP, and thereby increase photosynthetic efficiency and CO2 assimilation capacity under heat stress, through regulating the expression of some key genes, such as PGR5…Therefore, melatonin application displayed great potential to cope with the heat stress in Rhododendron.
Project description:We applied the tiling arrays to study the Arabidopsis whole-genome transcriptome in leaf, root, stem, flower, early silique, middle silique and late silique.
Project description:This dataset contains the transcriptome sequence of Zostera marina as produced by Illumina sequencing. Four tissues were sequenced, female flower in late and early stages of development, the male flower, the root and leaf tissue. Full transcriptome sequencing of four tissues, including female flower at two time points in development
Project description:Suitability of CATMA for the analysis of the transcriptome of Thellungiella halophila - flower/leaf transcriptomic comparison in Arabidopsis and Thellungiella. adt09-01_thellungiella - thelungiella 2 dye-swap - CATMA arrays
Project description:We studied early events of flower formation with a temporal resolution by employing a floral induction system to drive synchronized flower development from inflorescence meristem-like tissue (Wellmer et al. (2006)). We generated a developmental time series including vegetative leaf tissue, young developing flowers at zero (t0) and two days after induction of flower development (t2), and fully expanded inflorescences. Although we found very similar numbers of H3K27me3 and H3K4me3 target genes, many genes display quantitative changes in those marks, especially between different tissue types (e.g. >60% of target genes change quantitatively from leaf to t0).
Project description:In this study, we aim to present a global transcriptome analysis of medicinal plant, Catharanthus roseus. We generated about 343 million high-quality reads from three tissues (leaf, root and flower) using Illumina platform. We performed an optimized de novo assembly of the reads and estimated transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses among tissue samples.
Project description:The small RNAs and their targets were characterized in Amborella genome by deep sequencing the small RNA populations of leaf tissue and opened-female flower tissue. The small RNA targets were also validated from degradome populations of leaf tissue and opened-female flower tissue.