Project description:Acute exposure to high-dose gamma radiation often results in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip device consisting of human lung alveolar epithelium and pulmonary endothelium (Lung Alveolus Chip) is used to recapitulate acute, early stage RILI in vitro. This RNA-seq data captures that both the lung epithelium and endothelium in this model capture key hallmarks of this disease particularly, DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6h of radiation exposure. The data also suggests that radiation affects the alveolar endothelium more significantly than the epithelium. The alveolus chips are exposed to radiation injury at 16 Gy and shows effects that resemble the human lung greater than animal preclinical models. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative approach for studying the molecular basis of acute RILI towards screening radiation countermeasure therapeutics.
Project description:Acute exposure to high-dose gamma radiation can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute, early stage RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6h of radiation exposure, and greater damage is observed in the endothelium. The alveolus chips are exposed to radiation injury at 16 Gy and shows effects that resemble the human lung greater than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative approach for studying the molecular basis of acute RILI towards screening radiation countermeasure therapeutics.
Project description:Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.
Project description:The lung alveolus is the primary site of gas exchange in mammals. Within the alveolus, the alveolar type 2 (AT2) epithelial cell population generates surfactant to maintain alveolar structure and harbors a regenerative capacity to repair the alveolus after injury. We show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the AT2 cell population is critical for regenerating the alveolar niche. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a majority of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome, and functional phenotype with specific responsiveness to Wnt and FGF signaling that modulates differentiation and self-renewal, respectively. Importantly, human AEPs (hAEPs) can be isolated and characterized through a conserved surface marker and are required for human alveolar self-renewal and differentiation using alveolar organoid assays. Together, our findings show that AEPs are an evolutionarily conserved alveolar progenitor lineage essential for regenerating the alveolar niche in the mammalian lung.
Project description:The lung alveolus is the primary site of gas exchange in mammals. Within the alveolus, the alveolar type 2 (AT2) epithelial cell population generates surfactant to maintain alveolar structure and harbors a regenerative capacity to repair the alveolus after injury. We show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the AT2 cell population is critical for regenerating the alveolar niche. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a majority of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome, and functional phenotype with specific responsiveness to Wnt and FGF signaling that modulates differentiation and self-renewal, respectively. Importantly, human AEPs (hAEPs) can be isolated and characterized through a conserved surface marker and are required for human alveolar self-renewal and differentiation using alveolar organoid assays. Together, our findings show that AEPs are an evolutionarily conserved alveolar progenitor lineage essential for regenerating the alveolar niche in the mammalian lung.
Project description:The lung alveolus is the primary site of gas exchange in mammals. Within the alveolus, the alveolar type 2 (AT2) epithelial cell population generates surfactant to maintain alveolar structure and harbors a regenerative capacity to repair the alveolus after injury. We show that a Wnt-responsive alveolar epithelial progenitor (AEP) lineage within the AT2 cell population is critical for regenerating the alveolar niche. AEPs are a stable lineage during alveolar homeostasis but expand rapidly to regenerate a majority of the alveolar epithelium after acute lung injury. AEPs exhibit a distinct transcriptome, epigenome, and functional phenotype with specific responsiveness to Wnt and FGF signaling that modulates differentiation and self-renewal, respectively. Importantly, human AEPs (hAEPs) can be isolated and characterized through a conserved surface marker and are required for human alveolar self-renewal and differentiation using alveolar organoid assays. Together, our findings show that AEPs are an evolutionarily conserved alveolar progenitor lineage essential for regenerating the alveolar niche in the mammalian lung.
Project description:RATIONALE: A step-by-step procedure may help health care practitioners diagnose and treat cancer patients with bowel injury symptoms caused by radiation therapy.
PURPOSE: This randomized clinical trial is studying the care of cancer patients with bowel injury caused by radiation therapy to the pelvis.
Project description:Background: Microvascular injury and increased vascular leakage are prominent features of the radiation-induced lung injury (RILI) which follows cancer–associated thoracic irradiation. The mechanisms of RILI are incompletely understood and therapeutic strategies to limit RILI are currently unavailable. We established a murine model of radiation pneumonitis in order to assess mechanism-based therapies for RILI-induced inflammation and vascular barrier dysfunction. Based on prior studies, we investigated the therapeutic potential of simvastatin as a vascular barrier protective agent in RILI. Methods: C57BL6/J mice receiving single dose exposure to 18, 20, 22, or 25 Gy, (n=10/group) were temporally assessed (4-12 weeks) for cellular and biochemical indices of injury present in both bronchoalveolar lavage (BAL) and lung tissues (cytokines, tyrosine nitrosylated proteins, leukocytes, extravasation of Evans blue dye or EBD, BAL albumin, histology). In specific experiments, irradiated mice (25Gy) received simvastatin (10 mg/kg) via intraperitoneal injection three times a week (pre and post irradiation) for 2- 6 weeks post irradiation. Results. Acute RILI evolved in a dose- and time-dependent fashion. Mice irradiated with 25Gy exhibited modest increases in BAL leukocytes but significant increases in BAL IL-6 (p=0.03) and TNF-a (p=0.01) at 4 weeks compared to controls. Increases in BAL nitrotyrosine content peaked at 6 weeks (p=0.03) and was accompanied by marked nitrotyrosine immunostaining in lung tissues. Indices of increase lung vascular permeability such as EBD extravasation, BAL protein and BAL albumin significantly increased over time beginning at 6 weeks (p>0.002 all) with histological evidence of severe edema formation and airway inflammation. Simvastatin- treated irradiated mice were noted to exhibit marked attenuation of vascular leak with significantly decreased BAL protein (p=0.01) and inflammatory cell infiltration (50% reduction). Conclusion: Simvastatin is a potentially important therapeutic strategy to limit RILI and may influence radiation associated morbidity and mortality. We used microarrays to detail the global programme of gene expression induced by radiation in Wild type and the protection of SIMVA
Project description:Radiation-induced lung injury is a common late side-effect of thoracic radiotherapy. The inflammatory microenvironment plays a key role in this process. Endothelial cells are the goalkeeper of inflammation. Endothelial dysfunction following leukocytes infiltrated is a prominent feature in the pathogenesis of radiation-induced lung injury. Tyrosine phosphatase Shp2 is a key regulator of endothelial functions and inflammation. Here, we established a clinical-mimicking mouse model of radiation-induced lung injury and found that Shp2 activity was elevated in endothelium after injury. Mice with endothelium-specific Shp2 deletion showed relieved collagen deposition along with disrupted radiation-induced Jag1 expression in the endothelium. Furthermore, endothelium-derived Jag1 activated the alternative activation of macrophages in vitro and in vivo by paracrine Notch signaling. Consistently, Notch pathway was significant activated by chest irradiation in the peripheral blood leukocytes of cancer patients. Collectively, this is the first demonstration of radiation-induced lung injury regulation by endothelial Shp2. Shp2 participates in the radiation-induced endothelial dysfunction and subsequently inflammatory microenvironment producing.