Project description:Waste decomposition in landfills is a complex and microbe-mediated process. Understanding the microbial community composition and structure is critical for accelerating decomposition and reducing adverse impact on the environment. Here, we examined the microbial communities along with landfill depth and age (LDA) in a sanitary landfill in Beijing, China using 16s rRNA Illumina sequencing and GeoChip 4.6. We found that Clostridiales and Methanofollis were the predominant bacteria and archaea in the present landfill, respectively. Interestingly, in contrast with the decreasing trend of microbial diversity in soil, both phylogenetic and functional diversities were higher in deeper and older refuse in the landfill. Phylogenetic compositions were obviously different in the refuse with the same LDA and such difference is mainly attributed to the heterogeneity of refuse instead of random process. Nevertheless, functional structures were similar within the same LDA, indicating that microbial community assembly in the landfill may be better reflected by functional genes rather than phylogenetic identity. Mantel test and canonical correspondence analysis suggested that environmental variables had significant impacts on both phylogenetic composition and functional structure. Higher stress genes, genes for degrading toxic substances and endemic genes in deeper and older refuse indicated that they were needed for the microorganisms to survive in the more severe environments. This study suggests that landfills are a repository of stress-resistant and contaminant-degrading microorganisms, which can be used for accelerating landfill stabilization and enhancing in situ degradation. Fifteen refuse samples with five landfill depths and ages (6m/2a, 12m/4a, 18m/6a, 24m/8a and 30m/10a) were collected from a sanitary landfill in Beijing, China. Three replicates in every landfill depth and age
Project description:Waste decomposition in landfills is a complex and microbe-mediated process. Understanding the microbial community composition and structure is critical for accelerating decomposition and reducing adverse impact on the environment. Here, we examined the microbial communities along with landfill depth and age (LDA) in a sanitary landfill in Beijing, China using 16s rRNA Illumina sequencing and GeoChip 4.6. We found that Clostridiales and Methanofollis were the predominant bacteria and archaea in the present landfill, respectively. Interestingly, in contrast with the decreasing trend of microbial diversity in soil, both phylogenetic and functional diversities were higher in deeper and older refuse in the landfill. Phylogenetic compositions were obviously different in the refuse with the same LDA and such difference is mainly attributed to the heterogeneity of refuse instead of random process. Nevertheless, functional structures were similar within the same LDA, indicating that microbial community assembly in the landfill may be better reflected by functional genes rather than phylogenetic identity. Mantel test and canonical correspondence analysis suggested that environmental variables had significant impacts on both phylogenetic composition and functional structure. Higher stress genes, genes for degrading toxic substances and endemic genes in deeper and older refuse indicated that they were needed for the microorganisms to survive in the more severe environments. This study suggests that landfills are a repository of stress-resistant and contaminant-degrading microorganisms, which can be used for accelerating landfill stabilization and enhancing in situ degradation.
Project description:Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome and metaproteome analyses.
2024-01-15 | PXD046705 | Pride
Project description:Diversity of triclosan-degrading bacteria
| PRJNA587351 | ENA
Project description:Diversity of ibuprofen-degrading bacteria
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.