Project description:Comparing the gene expression profiling of HDGF-silenced RD-ES cells and control RD-ES cells to identify genes regulated by HDGF in RD-ES cells. Keywords: expression analysis
Project description:Comparing the gene expression profiling of HDGF-silenced RD-ES cells and control RD-ES cells to identify genes regulated by HDGF in RD-ES cells. Keywords: expression analysis Control RD-ES cells and HDGF-silenced RD-ES cells were profiled on 22K Human Genome Array
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Bone marrow-derived multipotent stromal cells (BM-MSCs) exhibit therapuetically valuable properties, including the capacity to differentiate into skeletal tissues and modulate immune system activity. These properties depend on proper regulation of dynamic gene expression in response to environmental and developmental stimuli. This study used chromatin immunoprecipitation (ChIP) coupled with human promoter tiling microarray analysis (ChIP-on-chip) to profile histones H3K4me3 and H3K27me3 at promoters genome-wide. The goal of the study was to identify gene promoters marked by H3K27me3 and H3K4me3 in BM-MSCs. ChIP-on-chip performed with antibodies to H3K4me3 and H3K27me3 on BM-MSCs from 3 different donors (labeled 1632, 167696, and 8F3560) and with technical replicates.
Project description:Bone marrow-derived multipotent stromal cells (BM-MSCs) exhibit therapuetically valuable properties, including the capacity to differentiate into skeletal tissues and modulate immune system activity. These properties depend on proper regulation of dynamic gene expression in response to environmental and developmental stimuli. This study used chromatin immunoprecipitation (ChIP) coupled with human promoter tiling microarray analysis (ChIP-on-chip) to profile histones H3K4me3 and H3K27me3 at promoters genome-wide. The goal of the study was to identify gene promoters marked by H3K27me3 and H3K4me3 in BM-MSCs.
Project description:This study describes the epigenetic profiling of the X chromosome during X inactivation. It includes H3K4me3 and H3K27me3 ChIP-Seq profiles of male (E14) and female (LF2 and XT67E1) mouse ES cells, together with their differentiated derivatives (either 4d atRA or 10d EB). It also includes ChIP-chip profiles around the Xic on chromosome X of H3K4me3, H3K27me3, H3K9me2, H3K36me3, Pol II, TBP, H3-Core as well as expression, using male (E14) and female (LF2) mouse ES cells, together with their differentiated derivatives (either 4d atRA or 10d EB).
Project description:This study describes the epigenetic profiling of the X chromosome during X inactivation. It includes H3K4me3 and H3K27me3 ChIP-Seq profiles of male (E14) and female (LF2 and XT67E1) mouse ES cells, together with their differentiated derivatives (either 4d atRA or 10d EB). It also includes ChIP-chip profiles around the Xic on chromosome X of H3K4me3, H3K27me3, H3K9me2, H3K36me3, Pol II, TBP, H3-Core as well as expression, using male (E14) and female (LF2) mouse ES cells, together with their differentiated derivatives (either 4d atRA or 10d EB).
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.