Project description:Common wheat is an allohexaploid species, derived through endoreduplication of an inter-specific triploid hybrid produced from a cross between cultivated tetraploid wheat and the wild diploid relative Aegilops tauschii Coss. Hybrid incompatibilities, including hybrid necrosis, have been observed in triploid wheat hybrids. A limited number of Ae. tauschii accessions show hybrid lethality in triploid hybrids crossed with tetraploid wheat due to developmental arrest at the early seedling stage, which is termed severe growth abortion (SGA). Despite the potential severity of this condition, the genetic mechanisms underlying SGA are not well understood. We conducted comparative analyses of gene expression profiles in crown tissues to characterize developmental arrest in triploid hybrids displaying SGA. A number of defense-related genes were highly up-regulated, whereas many transcription factor genes, such as the KNOTTED1-type homeobox gene, which function in shoot apical meristem (SAM) and leaf primordia, were down-regulated in the crown tissues of SGA plants. Transcript accumulation levels of cell cycle-related genes were also markedly reduced in SGA plants, and no histone H4-expressing cells were observed in the SAM of SGA hybrid plants. Our findings demonstrate that SGA shows unique features among other types of abnormal growth phenotypes, such as type II and III necrosis.
Project description:To test the differences in genome-wide DNA methylation signatures of haploid, diploid and triploid hESCs, we extracted genomic DNA from these cells and performed RRBS.
Project description:Hybridizations of plants that differ in number of chromosome sets (ploidy) frequently causes endosperm failure and seed arrest, a phenomenon referred to as triploid block. Unreduced diploid gametes generated by the omission of second division1 (osd1) mutant induce the triploid block, similar as tetraploid (4x) plants. We recently found that mutations in NRPD1, encoding the largest subunit of the plant-specific RNA Polymerase IV (Pol IV), can suppress the triploid block. Pol IV generates small RNAs required to guide de novo methylation in the RNA-directed DNA methylation (RdDM) pathway. Strikingly however, mutations in other components of the RdDM pathway like RDR2 and NRPE1 fail to suppress the triploid block when inherited in the osd1 background, but have a suppressive effect as 4x mutants. In this study, we aimed at understanding the cause for this discrepancy. We found that the ability of mutants in the RdDM pathway to suppress the triploid block depends on their degree of inbreeding. While nrpd1 is able to suppress in the first homozygous generation, mutants in RDR2, NRPE1, and DRM2 require at least one additional round of inbreeding to exert a suppressive effect. Our data thus reveal that loss of RdDM function differs in its effect in early and late generations and that Pol IV acts at an early stage of triploid block establishment.
Project description:The lack of MIRNA set and genome sequence of O. rufipogon (the ancestor of the cultivated rice) has limited to answer the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O.rufipogon were sequenced by Illumina platform and miRNA expression were investigated by miRNA chips. A de novo genome was assembled using ~55x coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on ~5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression difference in the wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated MIRNA genes, like protein-coding genes, were significantly shaped during rice domestication and could be one of the driven forces contributed to rice domestication.
Project description:The systematic deep sequencing analysis provided a comprehensive understanding of the transcriptome complexity of 2n and 3n Fujian oyster. This information broadens our understanding of the mechanisms of C.angulata polyploidization and contributes to molecular and genetic research by enriching the oyster database. This is the first report on genome-wide transcriptional analysis of adductor muscle of diploid and triploid Fujian oyster and has demonstrated triploid oysters are morphologically almost identical to their diploid counterparts, but have faster growth, due to the reorientation of energetic allocation from gametogenesis to somatic investment. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of diploid and triploid oyster.
Project description:To avoid negative environmental impacts of escapees and potential inter-breeding with wild populations, the Atlantic salmon farming industry has and continues to extensively test triploid fish that are sterile. However, they often show differences in performance, physiology, behavior and morphology compared to diploid fish, with increased prevalence of vertebral deformities and ocular cataracts as two of the most severe disorders. Here, we investigated the mechanisms behind the higher prevalence of cataracts in triploid salmon, by comparing the transcriptional patterns in lenses of diploid and triploid Atlantic salmon, with and without cataracts. We assembled and characterized the Atlantic salmon lens transcriptome and used RNA-seq to search for the molecular basis for cataract development in triploid fish. Transcriptional screening showed only modest differences in lens mRNA levels in diploid and triploid fish, with few uniquely expressed genes. In total, there were 165 differentially expressed genes (DEGs) between the cataractous diploid and triploid lens. Of these, most were expressed at lower levels in triploid fish. Differential expression was observed for genes encoding proteins with known function in the retina (phototransduction) and proteins associated with repair and compensation mechanisms. The results suggest a higher susceptibility to oxidative stress in triploid lenses, and that mechanisms connected to the ability to handle damaged proteins are differentially affected in cataractous lenses from diploid and triploid salmon.