Project description:The tomato SlWRKY3 transcription factor was overexpressed in cultivated tomato (Solanum lycopersicum)and transgenic plants transcriptome was compared to that of wild-type plants.
Project description:RNA sequencing in tomato for detect mRNA expression of Solanum lycopersicum Axillary bud.The two cultivars (monomaker, raceme) at Axillary bud for transcriptome sequencing
Project description:RNA sequencing in tomato for detect mRNA expression of Solanum lycopersicum flower.The two cultivars (monomaker, raceme) had three different flowering stages (budlet, Flower bud, Full bloom) for transcriptome sequencing
Project description:- Pollen tube growth is important process for successful double fertilization, which is critical for grain yield in crop plants. Despite much progress in identification of rapid alkalization factors (RALFs) which serve as ligand for signaling transduction during fertilization in Arabidopsis, there is no functional study of RALF in mono-cotyledon plant. - We functionally characterized two pollen specific RALF in rice (Oryza sativa) using multiple CRISPR/Cas9 induced loss-of-function mutants, peptide treatment, expression analyses, tag reporter lines. - OsRALF17 is specifically expressed in pollen and pollen tube as the strongest level among 41 RALF members in rice. Exogenously applied OsRALF17 inhibits pollen tube germination and elongation at high concentration, but enhances tube elongation at low concentration, indicating the regulation of growth balance. Double mutant of OsRALF17 with OsRALF19 exhibit almost male sterile, with defect on pollen germination and tube elongation. - Our study revealed that functionally-redundant OsRALF17 and 19 peptides binds to the OsMTD2, CrRLK1L family member, and transmits ROS signal for pollen tube germination and integrity maintenance in rice. We provide new insights into the role of RALF and expanding our understanding of the biological role of RALF in regulating rice fertilization.
Project description:RNA-seq of seedlings of four tomato species Solanum habrochaites, Solanum lycopersicum, Solanum pimpinelliolium, and Solanum pennellii. An additional panel of samples include many tissues from Solanum lycopersicum and Solanum pennellii in two light conditions
Project description:The tomato SlWRKY3 transcription factor was overexpressed in cultivated tomato (Solanum lycopersicum)and transgenic plants transcriptome was compared to that of wild-type plants. At least 4 plants were collected for RNA extraction. The aim of the experiment was to compare transcriptomes of 35::SlWRKY3 plants and wild-type plants grown together and on MS (Murashige and Skoog) medium in vitro for 4 weeks. A technical replicate (dye swap) was conducted.
Project description:Heat stress is a major cause for yield loss in many crops, including vegetable crops. Even short waves of high temperature, becoming more frequent during recent years, can be detrimental. Pollen development is most heat-sensitive, being the main cause for reduced productivity under heat-stress across a wide range of crops. The molecular mechanisms involved in pollen heat-stress response and thermotolerance are however not fully understood. Recently, we have demonstrated that ethylene, a gaseous plant hormone, plays a role in tomato (Solanum lycopersicum) pollen thermotolerance. These results were substantiated in the current work showing that increasing ethylene levels by using an ethylene-releasing substance, ethephon, prior to heat-stress exposure, increased pollen quality. A proteomic approach was undertaken, to unravel the mechanisms underlying pollen heat-stress response and ethylene-mediated pollen thermotolerance in developing pollen grains. Proteins were extracted and analyzed by means of a gel LC-MS fractionation protocol, and a total of 1355 proteins were identified. A dataset of 721 proteins, detected in three biological replicates of at least one of the applied treatments, was used for all analyses. Quantitative analysis was performed based on peptide count. The analysis revealed that heat-stress affected the developmental program of pollen, including protein homeostasis (components of the translational and degradation machinery), carbohydrate and energy metabolism. Ethephon-pretreatment shifted the heat-stressed pollen proteome closer to the proteome under non-stressful conditions, namely, by showing higher abundance of proteins involved in protein synthesis, degradation, tricarboxylic acid cycle and RNA regulation. Furthermore, up-regulation of protective mechanisms against oxidative stress was observed following ethephon-treatment (including higher abundance of glutathione-disulfide reductase, glutaredoxin and protein disulfide isomerase). Taken together, the findings identified systemic and fundamental components of pollen thermotolerance, and serve as a valuable quantitative protein database for further research.
Project description:We sequenced mRNA from immature green (15 days after anthesis) and red (Breaker+10 days) tomato (Solanum lycopersicum) fruit tissues from plants over-expressing SlGLK1 and SlGLK2 and from control plants 'M82' to compare gene expression levels between transgenic fruit and the control. Note: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence “Source Name” was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.