Project description:Human conjunctival cell lines are useful tools for modeling ocular surface disease and evaluation of ocular drugs. Here we demonstrate that the IOBA-NHC and the ChWK conjunctival epithelial cell lines show, using an unbiased gene microarray approach, unique gene expression signatures that differ from primary conjunctival epithelial cells (PCEC) and conjunctival tissue. Globally, the expression profile obtained with the Affymetrix U133A chip (>22000 genes) from PCEC was clustered more closely to conjunctival tissue than either of the 2 cell lines. However, when restricted to Gene Ontology sub-categories: cellular defense, viral replication/cycling, antigen presentation, anti-oxidant pathways and ubiquitin ligase complex, the cell lines correlated reasonably well to PCEC (r > 0.70). In the category response to inflammation, correlation of cell lines to PCEC was poor (r = -0.012 and –0.041 for IOBA-NHC and ChWK respectively). In general, the expression profile in IOBA-NHC cells was better correlated to PCEC than the ChWK cells. This was statistically significant (p<0.05) when one considers all the genes on the chip, or for proteins in the extracellular region, response to wounding, stress, lipid, protein and organic acid metabolism, development and differentiation. Our results are useful for the choice of conjunctival cell lines, if necessary, in future experiments, to increase validity of extrapolation to clinical scenarios. Keywords: Cell type comparison
Project description:Human conjunctival cell lines are useful tools for modeling ocular surface disease and evaluation of ocular drugs. Here we demonstrate that the IOBA-NHC and the ChWK conjunctival epithelial cell lines show, using an unbiased gene microarray approach, unique gene expression signatures that differ from primary conjunctival epithelial cells (PCEC) and conjunctival tissue. Globally, the expression profile obtained with the Affymetrix U133A chip (>22000 genes) from PCEC was clustered more closely to conjunctival tissue than either of the 2 cell lines. However, when restricted to Gene Ontology sub-categories: cellular defense, viral replication/cycling, antigen presentation, anti-oxidant pathways and ubiquitin ligase complex, the cell lines correlated reasonably well to PCEC (r > 0.70). In the category response to inflammation, correlation of cell lines to PCEC was poor (r = -0.012 and â0.041 for IOBA-NHC and ChWK respectively). In general, the expression profile in IOBA-NHC cells was better correlated to PCEC than the ChWK cells. This was statistically significant (p<0.05) when one considers all the genes on the chip, or for proteins in the extracellular region, response to wounding, stress, lipid, protein and organic acid metabolism, development and differentiation. Our results are useful for the choice of conjunctival cell lines, if necessary, in future experiments, to increase validity of extrapolation to clinical scenarios. Experiment Overall Design: Affymetrix U133A Genechip Experiment Overall Design: Experimental samples: Experiment Overall Design: IOBA-NHC cells (5 samples) Experiment Overall Design: Chang conjunctival epithelial cells WK derivative (4 samples) Experiment Overall Design: Primary conjunctival epithelial cells from explants (3 samples, obtained from cadaveric human explants) Experiment Overall Design: Conjunctival tissue from pterygium study where small piece uninvolved conjunctiva harvested (4 patients' RNA pooled to form one sample, total number of samples: 4) Experiment Overall Design: RT and hybridisation 16 hr according to Affymetrix protocol Experiment Overall Design: Labeling with biotin Experiment Overall Design: Washing microfluidics station 450 Experiment Overall Design: Analysis with Genespring GX 7.3.1 Experiment Overall Design: RMA normalisation following by normalisation to chip level median signal Experiment Overall Design: These processed data used for correlation analysis Experiment Overall Design: Further gene level normalisation to primary conjunctival epithelial cells samples for the purpose of fold change analysis to compare expression in IOBA or ChWK cells vs primary conjunctival epithelial cells.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes