Project description:Vibrio parahaemolyticus is a Gram-negative bacterium commonly found in marine and estuarine environments. Acute hepatopancreatic necrosis disease (AHPND) caused by this bacterium is an ongoing problem among shrimp farming industries. V. parahaemolyticus proteins PirA and PirB have been determined to be major virulence factors that induce AHPND. In this study, Pacific white shrimp (Litopenaeus vannamei) were challenged with recombinant PirA and PirB by a reverse gavage method and then at 30 m, 1, 2, 4, and 6 h time points, the hepatopancreas of five individual shrimp were removed and placed into RNA later. We conducted RNA sequencing of the hepatopancreas samples from a no PirA/B control (n = 5) and PirA/B-treated shrimp at the different time intervals (n=5). We evaluated the different gene expression patterns between the time groups to the control with a focus on identifying differences in innate immune function.
Project description:Acute hepatopancreatic necrosis disease (AHPND) is a shrimp farming disease, caused by a pathogenic Vibrio parahaemolyticus carrying a plasmid encoding Vp_PirAB-like toxin (VpAHPND). Whiteleg shrimp, Litopenaeus vannamei were fed food pellets containing formalin-killed VpAHPND (FKC-VpAHPND) to select for toxin resistance. To identify genes associated with Vp_PirAB-like toxin resistance, total RNA was sequenced to identify differentially expressed genes (DEGs) in the stomach and hepatopancreas among surviving shrimp (sur-FKC), AHPND-infected shrimp (Vp-inf) and normal shrimp (control). From a total of 79,591 genes, 194 and 224 DEGs were identified in the stomach and hepatopancreas transcriptomes, respectfully. The expressions of DEGs were validated by qPCR of ten genes. Only one gene, a gene homologous to L vannamei anti-lipopolysaccharide factor AV-R isoform (LvALF AV-R), was expressed significantly more strongly in sur-FKC than in the other groups. The association of LvALF AV-R expression and toxin resistance was affirmed from the surviving shrimp in a second-trial of FKC-VpAHPND feeding. These results suggest that LvALF AV-R may be involved in shrimp defense mechanisms against Vp_PirAB-like toxin virulence.
Project description:Transcriptome analysis of pacific white shrimp (Litopenaeus vannamei) hepatopancreas in response to Vibrio parahaemolyticus inoculation
Project description:In order to gain a better understanding of the impact of Vibrio parahaemolyticus infection on genetic regulation of Litopenaeus vannamei,we performed a transcriptome analysis in the hepatopancreas of Litopenaeus vannamei challenged with Vibrio parahaemolyticus, using the Illumina HiSeq 2500 platform.
Project description:In order to gain a better understanding of the impact of Vibrio parahaemolyticus infection on genetic regulation of Litopenaeus vannamei,we performed a miRNA-seq analysis in the hepatopancreas of Litopenaeus vannamei challenged with Vibrio parahaemolyticus, using the Illumina HiSeq 2500 platform.
2020-06-18 | GSE107696 | GEO
Project description:Effect of salinity on the gut bacteria of Pacific white shrimp.
| PRJNA576795 | ENA
Project description:Genotyping by sequencing in Vibrio parahaemolyticus AHPND tolerant white shrimp
Project description:Vibrio parahaemolyticus is the leading bacterial cause for seafood-related gastroenteritis worldwide. As an intestinal pathogen, V. parahaemolyticus competes with other commensal bacteria for the same pool of nutrients. The major source of nutrition for intestinal bacteria is intestinal mucus. We wanted to determine the expression profile of wild-type V. parahaemolyticus in mouse intestinal mucus and then perform a differential expression analysis in a ∆luxO deletion mutant, in which the high cell density quorum sensing regulator OpaR is constitutively expressed and low cell density regulator AphA is repressed.