Project description:The lean and fat broilers were derived from the 21st generation of the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). In brief, broilers in the two lines (lean line and fat line) of the NEAUHLF have the same Arbor Acres ancestry, but were divergently selected by the concentration of very low-density lipoprotein and abdominal fat percentage (AFP) at 7 weeks old. After 21 generations of selection, there is over a 10-fold difference in abdominal fat percentage between the two lines, representing a classical obese-lean-study model. At age of 7 weeks, ten male individuals of each line were selected randomly to investigate the interactions between gut microbiome, host gene expression and obesity.
Project description:Abstract: Atmospheric ammonia is a common problem in poultry industry. High concentrations of aerial ammonia cause great harm to broilers' health and production. For the consideration of human health, the limit exposure concentration of ammonia in houses is set at 25 ppm. Previous reports have shown that 25 ppm is still detrimental to livestock, especially the gastrointestinal tract and respiratory tract, but the negative relationship between ammonia exposure and the tissue of breast muscle of broilers is still unknown. In the present study, 25 ppm ammonia in poultry houses was found to lower slaughter performance and breast yield. Then, high-throughput RNA sequencing was utilized to identify differentially expressed genes in breast muscle of broiler chickens exposed to high (25 ppm) or low (3 ppm) levels of atmospheric ammonia. The transcriptome analysis showed that 163 genes (fold change â?¥ 2 or â?¤ 0.5; P-value < 0.05) were differentially expressed between Ammonia25 (treatment group) and Ammonia3 (control group), including 96 down-regulated and 67 up-regulated genes. qRT-PCR analysis validated the transcriptomic results of RNA sequencing. Gene Ontology (GO) functional annotation analysis revealed potential genes, processes and pathways with putative involvement in growth and development inhibition of breast muscle in broilers caused by aerial ammonia exposure. This study facilitates understanding of the genetic architecture of the chicken breast muscle transcriptome, and has identified candidate genes for breast muscle response to atmospheric ammonia exposure. Breast muscle mRNA profiles of 42-day old Arbor Acres male broilers exposed to 3 ppm (Ammonia3) and 25 ppm (Ammonia25) concentrations of atmospheric ammonia were generated by RNA sequencing, in duplicate, using Illumina HiSeq2000.
Project description:We provide raw gene sequences of 174 flowering time regulatory genes and gene othologs across a large barley population (895 barley lines) selected from a collection of landrace, cultivated barley, and research varieties of diverse origin. This set represents the whole variety of cultivated barley lifeforms, namely two- and six-row genotypes with winter, spring, and facultative growth habits. We applied a target capture method based on in-solution hybridization using the myBaits® technology (Arbor Biosciences, Ann Arbour, MI, USA) which is based on in-solution biotinylated RNA probes. Baits were designed for flowering time regulatory genes and gene othologs, and used for production of 80mer capture oligonucleotides for hybridization. Genomic DNA was extracted from leaves of a single two-week old barley plant per variety using the cetyl-trimethyl-ammonium bromide (CTAB) method. Physical shearing of genomic DNA was performed with an average size of 275 bp. Library preparation was conducted with KAPA Hyper Prep Kit (KAPA Biosystems, Wilmington, MA). Hybridization of customised RNA baits with capture pools was performed at 65°C for 24 hours. Each pooled sequence capture library was sequenced on an Illumina HiSeq3000 instrument using three lanes to generate paired-end reads per sample. Genome sequencing was conducted at AgriBio, (Centre for AgriBioscience, Bundoora, VIC, Australia).