Project description:To explore the exceptional mechanisms of gene expression and DNA methylation that are induced by low altitude environments in Tibetan pigs, we performed a comparative transcriptomic analysis of skeletal muscle in indigenous Tibetan pigs that reside in high altitude regions (~4,000 m) and their counterparts that migrated to the geographically neighboring low-altitude regions (~500 m) for nearly ten generations. We identified protein coding genes that related to hypoxia response (EGLN3 and FLT1), oxygen transport and energy metabolism (TFB2M), and two long non-coding RNAs (TCONS_00039686 and TCONS_00084992) that associated with the regulation of transcription and various nucleolus and organelle lumen, were differentially expressed between Tibetan pigs and their counterparts in low-altitude regions, thus might be the potential candidate regulators in skeletal muscle of low-altitude acclimation in Tibetan pigs. We also found genes embedded in differentially methylated regions between Tibetan pigs and their counterparts in low-altitude regions were mainly involved in ‘Starch and sucrose metabolism’, ‘glucuronosyltransferase activity’ processes, hypoxia and energy metabolism. We envision that this study will serve as a valuable resource for mammal acclimatization research and agricultural food industry.
Project description:To explore the exceptional mechanisms of gene expression and DNA methylation that are induced by low altitude environments in Tibetan pigs, we performed a comparative transcriptomic analysis of skeletal muscle in indigenous Tibetan pigs that reside in high altitude regions (~4,000 m) and their counterparts that migrated to the geographically neighboring low-altitude regions (~500 m) for nearly ten generations. We identified protein coding genes that related to hypoxia response (EGLN3 and FLT1), oxygen transport and energy metabolism (TFB2M), and two long non-coding RNAs (TCONS_00039686 and TCONS_00084992) that associated with the regulation of transcription and various nucleolus and organelle lumen, were differentially expressed between Tibetan pigs and their counterparts in low-altitude regions, thus might be the potential candidate regulators in skeletal muscle of low-altitude acclimation in Tibetan pigs. We also found genes embedded in differentially methylated regions between Tibetan pigs and their counterparts in low-altitude regions were mainly involved in ‘Starch and sucrose metabolism’, ‘glucuronosyltransferase activity’ processes, hypoxia and energy metabolism. We envision that this study will serve as a valuable resource for mammal acclimatization research and agricultural food industry.
Project description:Wandong cattle are an autochthonous Chinese breed used extensively for beef production. The breed tolerates extreme weather conditions and raw feed and are resistant to tick-borne diseases. However, the genetic basis of testis development and sperm production as well as breeding management is not well established in local cattle. In this study, we performed total RNA-Seq and comprehensively analyzed the circ-RNA expression profiling of the testes samples of six bulls at 3 years and 3 months of developmental age. In total, 17 013 circ-RNAs were identified, of which 681 circRNAs (P-adjust < 0.05) were differentially expressed (DE). Among these DE circ-RNAs, 579 were upregulated and 103 were downregulated in calf and bull testes. The Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the identified target genes were classified into three broad functional categories, including biological process, cellular component, and molecular function, and were enriched in the lysine degradation, cell cycle, and cell adhesion molecule pathways.