Project description:MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development. In soybean (Glycine max), an important edible oil crop, valuable lipids are synthesized and stored in the cotyledons during embryogenesis .This storage lipids are used as energy source of the emerging seeds, during the germination procces. Until now, there are no microRNAs related to lipid metabolism in soybean or any other plant. This work aims to describe the miRNAome of germinating seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus germinating seeds. A total of 183 familes were detected through a computational analysis of a large number of reads obtained from deep sequencing from two small RNA libraries of (i) pooled germintaing seeds stages and (ii) mature soybean seeds. We have found 39 new mirna precursors which produce 41 new mature forms. The present work also have identified isomiRNAs and mirnas offset (moRNAs). This work presents a comprehensive study of the miRNA transcriptome of soybean germinating seeds and will provide a basis for future research on more targeted studies of individual miRNAs and their functions in lipid consumption in development soybean seeds. MicroRNA profiles in 2 different seed libraries (mature seeds and a pool of germinating seed stages) of Glycine max by deep sequencing (Illumina GAII).
Project description:MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development. In soybean (Glycine max), an important edible oil crop, valuable lipids are synthesized and stored in the cotyledons during embryogenesis .This storage lipids are used as energy source of the emerging seeds, during the germination procces. Until now, there are no microRNAs related to lipid metabolism in soybean or any other plant. This work aims to describe the miRNAome of germinating seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus germinating seeds. A total of 183 familes were detected through a computational analysis of a large number of reads obtained from deep sequencing from two small RNA libraries of (i) pooled germintaing seeds stages and (ii) mature soybean seeds. We have found 39 new mirna precursors which produce 41 new mature forms. The present work also have identified isomiRNAs and mirnas offset (moRNAs). This work presents a comprehensive study of the miRNA transcriptome of soybean germinating seeds and will provide a basis for future research on more targeted studies of individual miRNAs and their functions in lipid consumption in development soybean seeds.
Project description:Transformation of Glycine max with seed-targeted expression vectors via Agrobacterium causes measurable unscripted gene expression changes in the seed transcriptome Overall design: mRNA was sequenced from three transgenic events expressing three different recombinant proteins in soybean seeds. Three plants were chosen from each as group replicates, and three seeds from each plant as individual biological replicates.
Project description:Transformation of Glycine max with seed-targeted expression vectors via Agrobacterium causes measurable unscripted gene expression changes in the seed transcriptome
Project description:The temporal expression profile of Glycine max seeds was carried out to identify genes that are differentially expressed (DE) during seed development. Using the Affymetrix chip, we have for the first time provided a holistic view of the transcriptional landscape during seed development in four different developmental stages in Glycine max. cv. Pusa 16. The analysis of the differential expression patterns and functional category enrichment of DE genes highlighted specific and common significant coordination and enrichment of various biological processes during seed development which have led to the identification of few candidate genes related to inositol metabolism and especially in phytate biosynthesis. In conclusion, we have shown here a logical approach to identify possible candidate genes for fine tuning the metabolic flux for phytate generation, which may be altered by metabolic engineering in developing a low phytate phenotype. Seeds of Glycine max grown at 28/26°C, 16h/8h light/dark were collected at different developmental stages( 0-4mm, 4-8mm, 8-12mm and 12-16mm ) and analyzed. Samples in triplicates from each developmental stage were used for data generation on Affymetrix Chip, each time the earlier developmental stage was considered as control Vs the treatment, corresponding to the later developmental stage. For each biological replicates, RNA was extracted from 20 seeds collected from 5 different plants, grown in the same conditions using the Trizol method. RNA integrity was analyzed using bio analyzer (with RIN value more than 8).
Project description:The temporal expression profile of Glycine max seeds was carried out to identify genes that are differentially expressed (DE) during seed development. Using the Affymetrix chip, we have for the first time provided a holistic view of the transcriptional landscape during seed development in four different developmental stages in Glycine max. cv. Pusa 16. The analysis of the differential expression patterns and functional category enrichment of DE genes highlighted specific and common significant coordination and enrichment of various biological processes during seed development which have led to the identification of few candidate genes related to inositol metabolism and especially in phytate biosynthesis. In conclusion, we have shown here a logical approach to identify possible candidate genes for fine tuning the metabolic flux for phytate generation, which may be altered by metabolic engineering in developing a low phytate phenotype.