Project description:The genetic foundation of chicken tail feather color is not very well studied to date, though that of body feather color is extensively explored. In the present study, we used a synthetic chicken dwarf line (DW), which was originated from the hybrids between a black tail chicken breed, Rhode Island Red (RIR) and a white tail breed, Dwarf Layer (DL), to understand the genetic rules of the white/black tail color. The DW line still contain the individuals with black or white tails, even if the body feather are predominantly red, after more than ten generation of self-crossing and being selected for the body feather color. We firstly performed four crosses using the DW line chickens including black tail male to female, reciprocal crosses between the black and white, and white male to female to elucidate the inheritance pattern of the white/black tail. We found that (i) the white/black tail feather colors are independent of body feather color and (ii) the phenotype are autosomal simple trait and (iii) the white are dominant to the black in the DW lines. Furtherly, we performed a genome-wide association (GWA) analysis to determine the candidate genomic regions underlying the tail feather color by using black tail chickens from the RIR and DW chickens and white individuals from DW lines.
Project description:The nacre color of shells has an effect on the pearl color in Hyriopsis cumingii, and is an important indicator for its value. However, little exosome and micro (mi)RNA information are available on nacre color formation in mussels. In this study, exosomes of mantles were extracted from white and purple mussels. High-throughput Illumina sequencing was performed on the white and purple mussel mantle exosomes.Moreover, miR-223 negatively regulated hcApo, which plays important roles in the absorption and transport of β-carotene in H. cumingii. These results improve our understanding of the molecular mechanisms of nacre color formation in H. cumingii.
Project description:Background: Earlobe color is a typical external trait in chicken. There are some previous studies showing that the chicken white/red earlobe color is a polygenic and sex-linked trait in some breeds, but its molecular genetic and histological mechanisms still remain unclear. Methods: We herein utilized histological section, genome-wide association study (GWAS) and RNA-seq, further to investigate the potential histological and molecular genetic mechanisms of white/red earlobe formation in Qiangyuan Partridge chicken (QYP). Results: through histological section analysis, we found the dermal papillary layer of red earlobes had many more blood vessels than that of white earlobes. And we identified a total of 44 SNPs from Chromosome 1, 2, 3, 4, 9, 10, 11, 13, 19, 20, 23 and Z, that was significantly associated with the chicken white/red earlobe color from GWAS, along with 73 significantly associated genes obtained (e.g., PIK3CB, B4GALT1 and TP63), supporting the fact that the white/red earlobe color was also polygenic and sex-linked in QYP. Importantly, PIK3CB and B4GALT1 are both involved in the biological process of angiogenesis, which may directly give rise to the chicken white earlobe formation through regulating blood vessel density in chicken earlobe. Additionally, through contrast of RNA-seq profiles between white earlobe skins and red earlobe skins, we further identified TP63 and CDH1 differentially expressed. Combined with the existing knowledge of TP63 in epithelial development and tumor angiogenesis, we propose that down-regulated TP63 in white earlobes may play roles in thickening the skin and decreasing the vessel numbers in dermal papillary layer, thereby contributing to the white earlobe formation via paling the redness of the skin in QYP, but the specific mechanism remains further clarified. Conclusion: our findings advance the existing understanding of the white earlobe formation, as well as provide new clues to understand the molecular mechanism of chicken white/red earlobe color formation.
Project description:the current study paints a thorough transcriptome profiles of different skin color groups (white, yellow and brown) in celestial goldfish, and several candidate genes were selected as important functional genes involved in the color variation
Project description:we compared the skin transcriptomes of the black- and white-coated region from the Boer and Macheng Black crossbred goat with black head and white body using the Illumina RNA-Seq method. Six cDNA libraries derived from skin samples of the white coat region (n = 3) and black coat region (n = 3) were constructed from three full-sib goats. On average, we obtained approximately 76.5 and 73.5 million reads for each skin sample of black coat and white coat, respectively, of which 75.39% and 76.05% reads were covered in the genome database. Our study provides insight into the transcriptional regulation of two distinct coat color that might serve as a key resource for understanding coat color pigmentation of goat.
Project description:Interventions: Linked color imaging (LCI),Endocuff-assisted colonoscopy (EAC),Linked color imaging and Endocuff-assisted colonoscopy (LCI+EAC),Standard white light high-definition colonoscopy;Experimental Device,Experimental Device,Experimental Device,Placebo Comparator Device;Linked color imaging (LCI),Endocuff-assisted colonoscopy (EAC),Linked color imaging and Endocuff-assisted colonoscopy (LCI+EAC),Standard white light high-definition colonoscopy
Primary outcome(s): Adenoma detection rate in each group Crossectional study Adenoma from colonoscopies
Study Design: Randomized
Project description:Boihai Red is new strains of inter-specific hybridizing the bay scallop (Argopecten irradians irradians) with the Peruvian scallop (Argopecten purpuratus). Orange color variant of adductor muscle have been developed through successive selective breeding in this strain. In the present study, transcriptomic was conducted on orange and white adductor muscle tissues. Transcriptomic analysis showeds 416 differentially expressed genes (DEGs) were identified between white and orange adductor muscle tissues in Boihai Red Scallop, with 216 up regulated and 200 down. In DEGs, apolipophorin, CYP450 and tyrosinase were expressed highly in orange adductor muscle tissues, which related to carotenoids or melanin. It is probable that not only carotenoids, but also melanin act on orange color of adductor muscle. This study provides valuable genetic resources for understanding underlying mechanisms and pathways of adductor muscle color.
Project description:Boihai Red is new strains of inter-specific hybridizing the bay scallop (Argopecten irradians irradians) with the Peruvian scallop (Argopecten purpuratus). Orange color variant of adductor muscle have been developed through successive selective breeding in this strain. In the present study,proteomic were conducted on orange and white adductor muscle tissues.Notably, 74 differentially expressed proteins (DEPs) were identified by lable free proteomics, including 36 up and 38 down regulated. In DEGs, apolipophorin, CYP450 and tyrosinase were expressed highly in orange adductor muscle tissues, which related to carotenoids or melanin. In DEPs, high expression of VPS and TIF in orange adductor muscle tissues indicated that proteins outside the carotenoid pathway might also affect carotenoid biosynthesis. In addition, RAB11A related to melanin was also expressed highly in orange adductor muscle tissues at protein level. It is probable that not only carotenoids, but also melanin act on orange color of adductor muscle. This study provides valuable genetic resources for understanding underlying mechanisms and pathways of adductor muscle color.
Project description:Coat color mainly reflects pigmentation resulting from melanin. Wool color is one of the most visible and heritable traits in sheep. Although several detailed molecular mechanisms involved in coat color have been elucidated, our understanding of differences in gene expression patterns of wool color-related genes in Chinese Merino (Junken type) is limited. We employed the Affymetrix microarray to identify differentially expressed genes. 122 genes were differentially expressed, consisting of 117 upregulated and 5 downregulated genes that were related to black/brown skin. The expression level of the BMP2, BMP4, TYRP1, LEPR, DCT, BMPR1A, and TP45A genes was validated by qRT-PCR, and the results coincided with those of microarray. The expression level of ASIP in the black/brown group was significantly lower than that of the white group, suggesting that this plays a key role in the regulation of wool pigmentation. Some cloned color genes (MITF, MC1R, GPR143, and KIT) showed no significant differences in expression levels between the black/brown- and white-skinned sheep. Functional annotation by using Gene Ontology (GO) showed that the differentially expressed genes enriched specific GO terms, particularly those relating to melanin biosynthesis and metabolic processes. KEGG pathway analysis indicated that the categories of tyrosine metabolism and melanogenesis pathway were enriched with differentially expressed genes. Taken together, the present study has shown that the tyrosine metabolism pathway plays an essential role in regulating wool color. The findings of this study may also be utilized in the elucidation of the molecular mechanisms and relationship between genes and wool color in Chinese Merino (Junken type). We used microarrays to detail the global programme of gene expression and identified distinct different expression genes of skin in different coat color Chinese Merino (Junken type).