Project description:Spider mites, including the two-spotted spider mite (Tetranychus urticae, TSSM) and the Banks grass mite (Oligonychus pratensis, BGM), are becoming increasingly important agricultural pests. The TSSM is an extreme generalist documented to feed on more than 1100 plant hosts. In contrast, the BGM is a grass specialist, with hosts including important cereal crops like maize, wheat, sorghum and barley. Historically, studies of plant-herbivore interactions have focused largely on insects. However, far less is known about plant responses to spider mite herbivores, especially in grasses, and whether responses differ between generalists and specialists. To identify plant defense pathways responding to spider mites, we collected time course RNA-seq data from barley (Hordeum vulgare L.) infested with TSSMs and BGMs. Additionally, and as a comparison to the physical damage caused by spider mite feeding, a wounding treatment was also included.
Project description:Spider mites, including the two-spotted spider mite (Tetranychus urticae, TSSM) and the Banks grass mite (Oligonychus pratensis, BGM), are becoming increasingly important agricultural pests. The TSSM is an extreme generalist documented to feed on more than 1100 plant hosts. In contrast, the BGM is a grass specialist, with hosts including important cereal crops like maize, wheat, sorghum and barley. Historically, studies of plant-herbivore interactions have focused largely on insects. However, far less is known about plant responses to spider mite herbivores, especially in grasses, and whether responses differ between generalists and specialists. To identify plant defense pathways responding to spider mites, we collected time course RNA-seq data from barley (Hordeum vulgare L.) infested with TSSMs and BGMs. Additionally, and as a comparison to the physical damage caused by spider mite feeding, a wounding treatment was also included. The experiment was performed with four biological replicates across each of the following (28 samples in total): no infestation (C, control), 2hr after wounding (W2), 24hr after wounding (W24), 2hr after TSSM infestation (T2), 24hr after TSSM infestation (T24), 2hr after BGM infestation (B2), and 24hr after BGM infestation (B24).
Project description:Intratumoral heterogeneity underlies cancer treatment resistance, but approaches to neutralize it remain elusive. Here, we recast heterogeneity in a systems perspective that considers cancer cell functional tasks inherited from cells of origin. We apply Archetype Analysis to bulk transcriptomics data from small cell lung cancer (SCLC), which forms tumors composed of neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. SCLC subtypes fit well in a 5-dimensional polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterpart, and include injury repair, slithering, and chemosensation. SCLC cells near a vertex are specialists for a task, while more distant cells are generalists, bearing gene signatures of multiple archetypes. Evolutionary theory and dynamical systems modeling suggest a division of labor strategy for adaptation to treatment, based on task trade-offs amongst specialists and generalists. Cell Transport Potential, a metric derived from single-cell RNA velocity, uncovers plasticity trends from specialists to generalists, and NE to non-NE subtypes. Transcription factor network simulations indicate that MYC overexpression increases plasticity by de-stabilizing NE subtypes. Framing heterogeneity in archetype space provides insights into transformative cancer treatments aimed at tumor cell plasticity.
Project description:Intratumoral heterogeneity underlies cancer treatment resistance, but approaches to neutralize it remain elusive. Here, we recast heterogeneity in a systems perspective that considers cancer cell functional tasks inherited from cells of origin. We apply Archetype Analysis to bulk transcriptomics data from small cell lung cancer (SCLC), which forms tumors composed of neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. SCLC subtypes fit well in a 5-dimensional polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterpart, and include injury repair, slithering, and chemosensation. SCLC cells near a vertex are specialists for a task, while more distant cells are generalists, bearing gene signatures of multiple archetypes. Evolutionary theory and dynamical systems modeling suggest a division of labor strategy for adaptation to treatment, based on task trade-offs amongst specialists and generalists. Cell Transport Potential, a metric derived from single-cell RNA velocity, uncovers plasticity trends from specialists to generalists, and NE to non-NE subtypes. Transcription factor network simulations indicate that MYC overexpression increases plasticity by de-stabilizing NE subtypes. Framing heterogeneity in archetype space provides insights into transformative cancer treatments aimed at tumor cell plasticity.
Project description:Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey such as ants, termites or other spiders. It has been observed that the venoms of specialists are often prey-specific and less complex than those of generalists, but venom composition has not been studied in detail in prey-specialised spiders. Here, we investigated the venom of the prey-specialised white-tailed spider (Lamponidae: Lampona sp.), which utilises specialised morphological and behavioural adaptations to capture spider prey. We hypothesised Lampona spiders also possess venomic adaptations, specifically, its venom is more effective to focal spider prey due to the presence of prey-specific toxins. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides <10 kDa and 105 proteins >10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Protein toxins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be spider-specific, as it was more potent against the preferred spider prey than against alternative prey represented by a cricket. In contrast, the venom of a related generalist (Gnaphosidae: Gnaphosa sp.) was similarly potent against both prey types. Prey-specific Lampona toxins were found to form part of the protein (>10 kDa) fraction of the venom. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.