Project description:we identified 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2).
Project description:we identified 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2).
Project description:The horse, like a majority of animal species, has a limited amount of species-specific expressed sequence data available in public databases. As a result, structural models for a majority of genes defined in the equine genome are predictions based on ab initio sequence analysis or the projection of gene structures from other mammalian species. The current study used Illumina-based sequencing of messenger RNA (RNA-seq) to help refine structural annotation of equine protein-coding genes and for a preliminary assessment of gene expression patterns. Sequencing of mRNA from eight equine tissues generated 293,758,105 thirty five-base sequence tags, equaling 10.28 giga-basepairs of total sequence data. The tag alignments represent approximately 208X coverage of the equine mRNA transcriptome and confirmed transcriptional activity for roughly 90% of the protein-coding gene structures predicted by Ensembl and NCBI. Tag coverage was sufficient to define structural annotation for 11,356 genes, while also identifying an additional 456 transcripts with exon/intron features that are not listed by either Ensembl or NCBI. Genomic locus data and intervals for the protein-coding genes predicted by the Ensembl and NCBI annotation pipelines were combined with 75,116 RNA-seq derived transcriptional units to generate a consensus equine protein-coding gene set of 20,302 defined loci. Gene ontology annotation was used to compare the functional and structural categories of genes expressed in either a tissue-restricted pattern or broadly across all tissue samples. Examination of 8 equine RNA samples representing 6 distinct tissues
Project description:The horse, like a majority of animal species, has a limited amount of species-specific expressed sequence data available in public databases. As a result, structural models for a majority of genes defined in the equine genome are predictions based on ab initio sequence analysis or the projection of gene structures from other mammalian species. The current study used Illumina-based sequencing of messenger RNA (RNA-seq) to help refine structural annotation of equine protein-coding genes and for a preliminary assessment of gene expression patterns. Sequencing of mRNA from eight equine tissues generated 293,758,105 thirty five-base sequence tags, equaling 10.28 giga-basepairs of total sequence data. The tag alignments represent approximately 208X coverage of the equine mRNA transcriptome and confirmed transcriptional activity for roughly 90% of the protein-coding gene structures predicted by Ensembl and NCBI. Tag coverage was sufficient to define structural annotation for 11,356 genes, while also identifying an additional 456 transcripts with exon/intron features that are not listed by either Ensembl or NCBI. Genomic locus data and intervals for the protein-coding genes predicted by the Ensembl and NCBI annotation pipelines were combined with 75,116 RNA-seq derived transcriptional units to generate a consensus equine protein-coding gene set of 20,302 defined loci. Gene ontology annotation was used to compare the functional and structural categories of genes expressed in either a tissue-restricted pattern or broadly across all tissue samples.
Project description:This SuperSeries is composed of the following subset Series: GSE35082: INTEGRATIVE ONCOGENOMIC AND HIGH-THROUGHPUT SEQUENCING ANALYSES OF THE COMMONLY DELETED REGION IN CHROMOSOME 7q32 IN SPLENIC MARGINAL ZONE LYMPHOMA (expression) GSE35329: INTEGRATIVE ONCOGENOMIC AND HIGH-THROUGHPUT SEQUENCING ANALYSES OF THE COMMONLY DELETED REGION IN CHROMOSOME 7q32 IN SPLENIC MARGINAL ZONE LYMPHOMA (SNP data) GSE35367: INTEGRATIVE ONCOGENOMIC AND HIGH-THROUGHPUT SEQUENCING ANALYSES OF THE COMMONLY DELETED REGION IN CHROMOSOME 7q32 IN SPLENIC MARGINAL ZONE LYMPHOMA (CGH) Refer to individual Series
Project description:RNA is transcribed from DNA, and therefore, there should be no RNA transcript from the deleted DNA region. Our study attempted to analyse whether any RNA cache that maps the deleted regions is present in human cells. Using data from the 1000 genome project, we selected 41 CEPH (CEU) and 38 Yoruba (YRI) samples that included the data for the entire genome sequence and ncRNA and mRNA sequences. Aligning the ncRNA reads against the genomic DNA in individual samples has revealed that 229 out of 1114 homozygous deletions have ncRNA reads that map to them. Further analysis has revealed that ncRNA reads that map the deleted regions are enriched around the deletion ends and at genic regions of the genome. The read enrichment at deletion ends suggests that these ncRNAs are likely some form of double-strand break induced RNAs. Our analysis suggests that human cells may contain a residual ncRNA cache that is possibly propagated across generations.