Project description:Temozolomide (TMZ) has been used for the treatment of glioblastoma (GBM) since last decade, but its treatment benefits are limited by acquired resistance, a process that remains incompletely understood. Here we report that a novel enhancer, located between the promoters of Ki67 and O6-methylguanine-DNA-methyltransferase (MGMT) genes, is activated in TMZ-resistant patient-derived xenograft (PDX) lines as well as in recurrent tumor samples. Activation of the enhancer correlates with increased MGMT expression, a major known mechanism for TMZ resistance. We show that forced activation of the enhancer in cell lines with low MGMT expression results in elevated MGMT expression. Deletion of this enhancer in cell lines with high MGMT expression leads to reduced levels of MGMT and Ki67, increased TMZ sensitivity and impaired proliferation. Together, these studies uncover a novel mechanism that regulates MGMT expression, confers TMZ resistance and potentially regulates tumor proliferation.
Project description:Patients diagnosed with glioblastoma (GBM) with sustained synthesis of the DNA repair enzyme, O6-methyl guanine DNA methytransferase (MGMT), are rendered resistant to Temozolomide (TMZ) chemotherapy. Here, we hypothesized that pretreatment with the proteasome inhibitor Bortezomib (BTZ, Velcade) might sensitize these GBM to TMZ by depleting MGMT.
Project description:Acquired resistance of temozolomide (TMZ) is one of the major obstacle of glioblastoma clinical treatment and the mechanism of TMZ resistance is still not very clear. In the presented research we show that deletion of rs16906252-associated MGMT enhancer in MGMT negative glioma cells induced increase sensitivity to temozolomide and combination of RNA-seq and Capture HiC identified several long-range target genes of rs16906252-associated MGMT enhancer. In addition, HiC data shows alterations of chromatin structures in glioma cells survived from high-dosage TMZ treatment and changes of TADs influence rs16906252-associated MGMT enhancer’s long-range regulations of target genes. Our study suggests rs16906252-associated MGMT enhancer regulates glioma cells’ TMZ sensitivity by long-range regulations of several target genes, which is a novel mechanism of regulation of TMZ sensitivity in glioma cells.
Project description:Temozolomide (TMZ) is an important first-line treatment for glioblastoma (GBM), but there are limitations to TMZ response in terms of durability and dependence on the promoter methylation status of the DNA repair gene O6-methylguanine DNA methyltransferase (MGMT). MGMT-promoter-hypermethylated (MGMT-M) GBMs are more sensitive to TMZ than MGMT-promoter-hypomethylated (MGMT-UM) GBMs. Moreover, TMZ resistance is inevitable even in TMZ-sensitive MGMT-M GBMs. Hence, epigenetic reprogramming strategies are desperately needed in order to enhance TMZ response in both MGMT-M and MGMT-UM GBMs. In this study, we present novel evidence that the epigenetic reactivation of Tumor Suppressor Candidate 3 (TUSC3) can reprogram sensitivity of GBM stem cells (GSCs) to TMZ irrespective of MGMT promoter methylation status. Interrogation of TCGA patient GBM datasets confirmed TUSC3 promoter regulation of TUSC3 expression and also revealed a strong positive correlation between TUSC3 expression and GBM patient survival. Using a combination of loss-of-function, gain-of-function and rescue studies, we demonstrate that TUSC3 reactivation is associated with enhanced TMZ response in both MGMT-M and MGMT-UM GSCs. Further, we provide novel evidence that the demethylating agent 5-Azacitidine (5-Aza) reactivates TUSC3 expression in MGMT-M GSCs, whereas the combination of 5-Aza and MGMT inhibitor Lomeguatrib is necessary for TUSC3 reactivation in MGMT-UM GSCs. Lastly, we propose a pharmacological epigenetic reactivation strategy involving TUSC3 that leads to significantly prolonged survival in MGMT-M and MGMT-UM orthotopic GSCs models. Collectively, our findings provide a framework and rationale to further explore TUSC3-mediated epigenetic reprogramming strategies that could enhance TMZ sensitivity and outcomes in GBM. Mechanistic and translational evidence gained from such studies could contribute towards optimal design of impactful trials for MGMT-UM GBMs that currently do not have good treatment options.
Project description:Temozolomide (TMZ) is an oral alkylating agent used for the treatment of glioblastoma and is now becoming a chemotherapeutic option in patients diagnosed with high-risk low-grade gliomas. The O-6-methylguanine-DNA methyltransferase (MGMT) is responsible for the direct repair of the main TMZ-induced toxic DNA adduct, the O6-Methylguanine lesion. MGMT promoter hypermethylation is currently the only known biomarker for TMZ response in glioblastoma patients. Here we show that a subset of recurrent gliomas carry MGMT genomic rearrangements that lead to MGMT overexpression, independently from changes in its promoter methylation. By leveraging the CRISPR/Cas9 technology we generated some of these MGMT rearrangements in glioma cells and demonstrated that they lead to TMZ resistance both in vitro and in vivo. Lastly we showed that such fusions can be detected in tumor-derived exosomes and could potentially represent an early detection marker of tumor recurrence in a subset of patients treated with TMZ.
Project description:Temozolomide (TMZ) is an oral alkylating agent used for the treatment of glioblastoma and is now becoming a chemotherapeutic option in patients diagnosed with high-risk low-grade gliomas1. The O-6-methylguanine-DNA methyltransferase (MGMT) is responsible for the direct repair of the main TMZ-induced toxic DNA adduct, the O6-Methylguanine lesion. MGMT promoter hypermethylation is currently the only known biomarker for TMZ response in glioblastoma patients2. Here we show that a subset of recurrent gliomas carry MGMT genomic rearrangements that lead to MGMT overexpression, independently from changes in its promoter methylation. By leveraging the CRISPR/Cas9 technology we generated some of these MGMT rearrangements in glioma cells and demonstrated that they lead to TMZ resistance both in vitro and in vivo. Lastly we showed that such fusions can be detected in tumor-derived exosomes and could potentially represent an early detection marker of tumor recurrence in a subset of patients treated with TMZ.
Project description:Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O 6 -methylguanine-DNA methyltransferase (MGMT) promoter is associated with an improved response to TMZ treatment, while inactivation of the DNA mismatch repair (MMR) pathway is associated with therapeutic resistance and TMZ-induced mutagenesis. We previously demonstrated that TMZ treatment of LGG induces driver mutations in the RB and AKT-mTOR pathways, which may drive malignant progression to secondary GBM. To better understand the mechanisms underlying TMZ-induced mutagenesis and malignant progression, we explored the evolution of MGMT methylation and genetic alterations affecting MMR genes in a cohort of 34 treatment-naïve LGGs and their recurrences. Recurrences with TMZ-associated hypermutation had increased MGMT methylation compared to their untreated initial tumors and higher overall MGMT methylation compared to TMZ-treated non-hypermutated recurrences. A TMZ-associated mutation in one or more MMR genes was observed in five out of six TMZ-treated hypermutated recurrences. In two cases, pre-existing heterozygous deletions encompassing MGMT, or an MMR gene, were followed by TMZ-associated mutations in one of the genes of interest. These results suggest that tumor cells with methylated MGMT may undergo positive selection during TMZ treatment in the context of MMR deficiency.
Project description:Sensitivity to temozolomide (TMZ) is restricted to a subset of glioblastoma patients, with the major determinant of resistance a lack of promoter methylation of the gene encoding the DNA methyltransferase MGMT, although other mechanisms are thought to be active. In a genome-wide screen of paediatric and adult glioma cells, we identified a co-ordinated upregulation of HOX gene expression in the MGMT-independent cell line KNS42. As a recent study has proposed a mechanism for this observation whereby transcriptional activation of the HOXA cluster is reversible by a PI3-kinase inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation, we sought to investigate whether this was active in our system. We thus treated KNS42 cells for 24 hours with the dual PI3-kinase / mTOR inhibitor PI-103 at 5x IC50 and carried out gene expression profiling using Illumina HT-12 microarrays.
Project description:LncRNAs interact with other cellular molecules, such as DNA, RNA and proteins, to regulate various biological processes. In our study, we demonstrated that LINC01956 promoted MGMT mRNA nuclear export and led to TMZ resistance. In order to elucidate the potential molecular mechanism of LINC01956 promoting MGMT mRNA nuclear export, RNA pulldown experiments and quantitative proteomics mass-spectrometry (MS) analysis were performed.
Project description:Glioblastoma multiforme (GBM) is the most common and lethal malignant primary brain tumor. Temozolomide (TMZ) is a promising chemo-therapeutic agent to treat GBM. However, resistance to TMZ develops quickly with a high frequency. The mechanisms underlying GBM cells’ resistance to TMZ are not fully understood. Long non-coding RNAs (lncRNAs) are aberrantly expressed in many cancers and are highly involved in their pathogenesis including drug-resistence. In order to systematically study the role of lncRNAs in GBM cells' resistence to TMZ , we built gene expression profiles of TMZ-resistant cell line and TMZ-sensitive cell line using lncRNA and mRNA gene expression microarrays.