Project description:Broad-host root endophytes establish long-term interactions with a large variety of plants, thereby playing a significant role in natural and managed ecosystems and in evolution of land plants. To exploit plants as living substrates and to establish a compatible interaction with morphologically and biochemically extremely different hosts, endophytes must respond and adapt to different plant signals and host metabolic states. Here we identified host-adapted colonization strategies and host-specific effector candidates of the mutualistic root endophyte Piriformospora indica by a global investigation of fungal transcriptional responses to barley and Arabidopsis at different symbiotic stages. Additionally we examined the role played by nitrogen in these two diverse associations. Cytological studies and colonization analyses of a barley mutant and fungal RNAi strains show that distinct physiological and metabolic signals regulate host-specific lifestyle in P. indica. This is the foundation for exploring how distinct fungal and host symbiosis determinants modulate biotrophy in one host and saprotrophy in another host and, ultimately, gives hints into the mechanisms underlying host adaptation in root symbioses.
Project description:Broad-host root endophytes establish long-term interactions with a large variety of plants, thereby playing a significant role in natural and managed ecosystems and in evolution of land plants. To exploit plants as living substrates and to establish a compatible interaction with morphologically and biochemically extremely different hosts, endophytes must respond and adapt to different plant signals and host metabolic states. Here we identified host-adapted colonization strategies and host-specific effector candidates of the mutualistic root endophyte Piriformospora indica by a global investigation of fungal transcriptional responses to barley and Arabidopsis at different symbiotic stages. Additionally we examined the role played by nitrogen in these two diverse associations. Cytological studies and colonization analyses of a barley mutant and fungal RNAi strains show that distinct physiological and metabolic signals regulate host-specific lifestyle in P. indica. This is the foundation for exploring how distinct fungal and host symbiosis determinants modulate biotrophy in one host and saprotrophy in another host and, ultimately, gives hints into the mechanisms underlying host adaptation in root symbioses. Arabidopsis and barley roots were inoculated with Piriformospora indica and grown for 14 days. Additionally P. indica was grown on 1/10 PNM medium alone. Samples were taken 3 and 14 dpi (Arabidopsis), 14 dpi (barley) and 3dpi (1/10 PNM). Each experiment was performed in three independent biological repetitions. Piriformospora indica gene expression examined only.
Project description:Arbuscular mycorrhizal (AM) associations enhance the phosphorous and nitrogen nutrition of host plants, but little is known about their role in potassium (K+) nutrition. Medicago truncatula plants were co-cultured with the AM fungus Rhizophagus irregularis under high and low K+ regimes for six weeks. We determined how K+ deprivation affects plant development, mineral acquisition, and how these negative effects are tempered by the AM colonization. The transcriptional response of AM roots under K+ deficiency was analyzed by whole genome RNA-seq. K+ deprivation decreased root biomass, external K+ uptake, and modulated oxidative stress gene expression in M. truncatula roots. AM colonization induced specific transcriptional responses to K+ deprivation that seem to temper these negative effects. A gene network analysis revealed putative key regulators of these responses. This study confirmed that AM associations provide some tolerance to K+ deprivation to host plants, revealed that AM symbiosis modulates the expression of specific root genes to cope with this nutrient stress, and identified putative regulators participating in these tolerance mechanisms.
Project description:Perennial ryegrass (Lolium perenne L.) is the most cultivated cool-season grass worldwide with crucial roles in carbon fixation and fodder for livestock. Protection of these grasses from biotic and abiotic factors are dictated through a mutually-beneficial relationship with endophytes that confer bioprotective properties. Common endophytes of the genus Epichloë promote the health and survival of cool-season forages greases and protect the plants from fluctuating environmental conditions. Climate change, and specifically, a steady increase in atmospheric CO2 levels, presents a dramatic and imminent threat faced by our ecosystem, which poses substantial pressures on plant health and survival. Defining the relationships between endophytes and the host plant may uncover mechanisms of bioprotection, which can be exploited to promote adaptable plant systems in rising CO2 conditions. In this study, we quantify changes in biomass and seed production of L. perenne L. at 400 and 800 ppm CO2 and identify endophyte-specific changes in metabolite production. Additionally, we discover protein-level changes from both the endophyte and plant perspectives, which underscore the compatible relationship between a common, natural endophyte and L. perenne L., compared to an incompatible and detrimental relationship the epichloid strain, AR1. Taken together, our data set provides new understanding into the intricacy of compatibility between endophyte and host from multiple molecular levels and suggests opportunity to promote plant robustness and survivability in rising CO2 environmental conditions through application of bioprotective epichloid strains.
Project description:Interactions between plants and each neighboring microbial species are fundamental building blocks that collectively determine the structure and function of the plant microbiota, but the molecular basis of such interactions is poorly characterized. Here, we monocolonized Arabidopsis leaves with nine plant-associated bacteria from all major phyla of the plant microbiota and profiled co-transcriptomes of plants and bacteria. These strains elicited quantitatively different plant transcriptional responses including typical pattern-triggered immunity responses. Genes of non-pathogenic bacteria involved in general metabolism and energy production were commonly suppressed in planta in contrast to a virulent pathogen. Various nutrient acquisition pathways that are frequently encoded in the genomes of plant-associated bacteria were induced in planta in a strain-specific manner, shedding light on bacterial adaptation to the plant environment and identifying a potential driving force of niche separation. Integrative analyses of plant and bacterial transcriptomes suggested that the transcriptional reprogramming of plants is largely uncoupled from that of bacteria at an early stage of interactions. This study provides insights into how plants discriminate among bacterial strains and sets the foundation for in-depth mechanistic dissection of plant-microbiota interactions.
Project description:Genome scale metabolic model of Drosophila gut microbe Acetobacter fabarum
Abstract -
An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and their impact on host physiology. This research can be confounded by poorly understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multiway interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition, and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that, in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle, including 2-oxoglutarate and succinate, are produced at high flux and cross-fed between bacterial taxa, suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.IMPORTANCE Drosophila is an important model for microbiome research partly because of the low complexity of its mostly culturable gut microbiota. Our current understanding of how Drosophila interacts with its gut microbes and how these interactions influence host traits derives almost entirely from empirical studies that focus on individual microbial taxa or classes of metabolites. These studies have failed to capture fully the complexity of metabolic interactions that occur between host and microbe. To overcome this limitation, we reconstructed and analyzed 31 metabolic models for every combination of the five principal bacterial taxa in the gut microbiome of Drosophila This revealed that metabolic interactions between Drosophila gut bacterial taxa are highly dynamic and influenced by cooccurring bacteria and nutrient availability. Our results generate testable hypotheses about among-microbe ecological interactions in the Drosophila gut and the diversity of metabolites available to influence host traits.
Project description:An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and its impact on host physiology. This research can be confounded by poorly-understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multi-way interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle including 2-oxoglutarate and succinate are produced at high flux and cross-fed between bacterial taxa suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.
Project description:An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and its impact on host physiology. This research can be confounded by poorly-understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multi-way interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle including 2-oxoglutarate and succinate are produced at high flux and cross-fed between bacterial taxa suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.
Project description:An important goal for many nutrition-based microbiome studies is to identify the metabolic function of microbes in complex microbial communities and its impact on host physiology. This research can be confounded by poorly-understood effects of community composition and host diet on the metabolic traits of individual taxa. Here, we investigated these multi-way interactions by constructing and analyzing metabolic models comprising every combination of five bacterial members of the Drosophila gut microbiome (from single taxa to the five-member community of Acetobacter and Lactobacillus species) under three nutrient regimes. We show that the metabolic function of Drosophila gut bacteria is dynamic, influenced by community composition and responsive to dietary modulation. Furthermore, we show that ecological interactions such as competition and mutualism identified from the growth patterns of gut bacteria are underlain by a diversity of metabolic interactions, and show that the bacteria tend to compete for amino acids and B vitamins more frequently than for carbon sources. Our results reveal that in addition to fermentation products such as acetate, intermediates of the tricarboxylic acid (TCA) cycle including 2-oxoglutarate and succinate are produced at high flux and cross-fed between bacterial taxa suggesting important roles for TCA cycle intermediates in modulating Drosophila gut microbe interactions and the potential to influence host traits. These metabolic models provide specific predictions of the patterns of ecological and metabolic interactions among gut bacteria under different nutrient regimes, with potentially important consequences for overall community metabolic function and nutritional interactions with the host.