Project description:The effects of increasing addition of green tea in dietary changes the bacterial populations in broiler ileum were evaluated. Four hundreds of AA broilers were randomly assigned to four groups with green tea addition of 0, 0.5, 1 and 2 percent in the diet. The body weight showed no difference but a digital increase positively correlated with addition of green tea. The content of green tea had a linear effect of lengthening the ileum villi. The barcoded DNA pyrosequencing method was used to reveal 15 phyla, 1157phylotypes and 3098 16S operational taxonomic units (OTUs). The most predominant bacterial phyla were Firmicutes (56.89%), Actinobacteria (30.58%), Proteobacteria (8.61%) and Bacteroidetes (2.72%). As the proportion of additional green tea increased, the abundance of phylum Actinobacteria (p=0.003) and Proteobacteria (p=0.049) almost linearly increased, while the proportion of Firmicutes (p=0.027) linearly decreased. Only 2 OTUs were significantly affected by the increased additive, Corynebacteriaceae (p=0.011) and Staphylococcaceae (p= 0.006). Triplot analysis suggested that the dominant phyla of Verrucomicrobia, TM7 and Actinobacteria were clearly related to the addition of green tea. Moreover, green tea addition influenced the construction of microbiota, and lengthened the villus in ileum by Monte Carlo permutation test. These findings provide a new understanding of the ileal microbial ecology, which may be useful in modulating the gut microbiome, and also the proper usage of powdered green tea.
2015-09-29 | GSE73516 | GEO
Project description:Soil bacterial community in the tea plantations
| PRJNA545380 | ENA
Project description:bacterial community of Qingzhuan brick Tea fermentation
| PRJNA811375 | ENA
Project description:Bacterial community of different tea planting ages
| PRJNA885618 | ENA
Project description:Bacterial community structure in an organic tea plantation
| PRJNA642253 | ENA
Project description:bacterial community structure in the rhizosphere of tea
Project description:Pu-erh tea has attracted increasing attention worldwide because of its special flavor and health effects, but its impact on composition and function of the gut microbiota remains unclear. The aim of this study was to investigate effects of aqueous extracts of fermented (ripe) and non-fermented (raw) Pu-erh teas on the composition and function of intestinal microbiota of rats with diet-induced obesity. We conducted a comparative metagenomic and metaproteomic investigation of the microbial communities in cecal samples taken from obese rats administrated with or without extracts of raw and ripe Pu-erh tea. By analyzing the composition and diversity of 16S rRNA amplicons and expression profiles of 814 distinct proteins, we found that, despite differences in the chemical compositions of the raw and ripe Pu-erh tea, administration of either at two different doses (0.15 and 0.40 g/Kg body weight), significantly (P<0.05) increased community diversity, and changed the composition of the cecal microbiota by increasing the relative abundances of Firmicutes and decreasing those of Bacteroidetes. Community metabolic processes including sucrose metabolism, glycolysis, syntheses of proteins, rRNA and antibiotics were significantly (P<0.05), or had a tendency (0.10<P<0.05) to be, promoted by enriching relevant enzymes. Furthermore, evidences from population, molecular and metabolic levels have shown that polyphenols of raw Pu-erh tea and their metabolites can promote potentially the growth of Akkermansia municiphila by stimulating the type II and III secretion system protein, elongation factor Tu, and glyceraldehyde-3-phosphate dehydrogenase. This study has provided new evidences for the prebiotic effects of Pu-erh tea.
Project description:Purpose: Microarray technologies provide a unique opportunity to deeply investigate bacterial molecular responses to treatments. Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of the bacterial canker of kiwifruit causing severe economic losses worldwide. At present, integrated control strategies include chemical treatments with copper-based products and preventive measures but the high virulence and fast spreading of the bacterium are hardly controlled by such measures, and especially copper use is questioned because of the possible appearance of copper resistant bacterial strains. The present project aims at the identification of Psa responses to green tea treatment (Gunpowder variety) at sub-lethal concentration (0.4 mg/ml). Methods: Psa cells were cultured in liquid KB (controls) or in KB supplemented with Gunpowder tea (Gunpowder-trateted) at 0.4 mg/ml EGCG for 24 h at 28°C. The microarray experiments on Gunpowder treated or untreated samples in biological triplicate resulted in 6 samples to be analyzed. Conclusions: This work identified important molecular mechanisms involved in Psa responses upon Gunpowder green tea treatment.