Project description:Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as non-alcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing, liver transcriptome, proteome, and metabolome analysis, as well as microbial 16S rRNA gene sequencing of each gut segment.
Project description:We report the genome-wide DNA methylation mapping of chicken by methylated DNA immunoprecipitation following by highthroughput sequencing, and the gene expression profile of chicken by RNA-seq. For meDIP-seq, about 17,202,074 to 27,501,760 reads were generated for the tissue and liver tissues of the red jungle fowl and the avian broiler each. We found that compared with the red jungle fowl, DNA methylation in muscle tissue of the avian broiler, showed dramatically decline on a genome-wide scale. Furthermore, the length of the highly methylated regions (HMRs) has become shorter in the avian broiler, which has suffered intense artificial selection. In addition to the global changes in DNA methylation, transcriptome-wide analysis of the two breeds of chicken revealed that the patterns of gene expression in the domestic chicken have undergone a specific bias towards a pattern that is more suited to human-made environments with variable expression in certain gene functions, such as immune response and fatty acid metabolism. Our results demonstrated a potential role of epigenetic modification in animal domestication besides the genetic variations. Examination of whole genome DNA methylation status in liver and muscle of two chicken breeds.
Project description:Copy number variation profiles comparing control female Dehong chiken blood DNA with 11 different chicken breeds(Silkie, Tibetan Chicken, Gallus gallus spadiceus, Bearded Chicken, Jinhu Chicken, Anak Chicken, Beijing Fatty Chicken, Langshan Chicken, Qingyuan partridge Chicken, Shek-Ki Chicken, Wenchang Chicken) blood DNA. Each test breeds had one male and one female sample, totally 22 test DNA samples.Goal is to get the golbal copy number variation profile between chicken breeds.
Project description:Non-alcoholic steatohepatitis (NASH) is a fatty liver disease that does not involve alcohol consumption and is characterized by fatty degeneration, inflammation, and hepatocellular damage. Therefore, predicting future fibrosis is necessary in the early stages of NASH to prevent developing diseases. This study examined histological changes in the liver as well as microRNA expression changes in the liver and serum of NASH mice model to search for potential biomarker candidates that may predict early fibrosis. This study used 6-week-old C57BL/6NJcl male mice and fed the control and NASH groups with a food-breeding solid diet (CE-2) and a high-fat diet (choline-deficient high-fat and 0.1% [w/v] methionine supplemented diet), respectively. We used Agilent Technologies miRNA microarray to examine microRNA expression in the liver and serum.
Project description:Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and lifestyle. Exercise is known to be beneficial for NAFLD treatment. Recent studies have shown the critical involvement of microRNA in NAFLD. However, it is unclear whether exercise could prevent NAFLD via miRNA targeting. We used microarrays to examine microRNA profiles in high-fat diet fed mice with and without exercise in comparison to normal diet fed mice.
Project description:We report the genome-wide DNA methylation mapping of chicken by methylated DNA immunoprecipitation following by highthroughput sequencing, and the gene expression profile of chicken by RNA-seq. For meDIP-seq, about 17,202,074 to 27,501,760 reads were generated for the tissue and liver tissues of the red jungle fowl and the avian broiler each. We found that compared with the red jungle fowl, DNA methylation in muscle tissue of the avian broiler, showed dramatically decline on a genome-wide scale. Furthermore, the length of the highly methylated regions (HMRs) has become shorter in the avian broiler, which has suffered intense artificial selection. In addition to the global changes in DNA methylation, transcriptome-wide analysis of the two breeds of chicken revealed that the patterns of gene expression in the domestic chicken have undergone a specific bias towards a pattern that is more suited to human-made environments with variable expression in certain gene functions, such as immune response and fatty acid metabolism. Our results demonstrated a potential role of epigenetic modification in animal domestication besides the genetic variations. Examination of whole genome gene expression profiles in liver and muscle tissues of two chicken breeds.