Project description:Using heterogeneous stock (HS) rats, we have identified a region on rat chromosome 1 that maps multiple diabetic traits. We sought to use global expression analysis to determine if genes within this region are differentially expressed between HS rats with normal glucose tolerance and those with glucose intolerance
Project description:Using heterogeneous stock (HS) rats, we have identified a region on rat chromosome 1 that maps multiple diabetic traits. We sought to use global expression analysis to determine if genes within this region are differentially expressed between HS rats with normal glucose tolerance and those with glucose intolerance
Project description:Using heterogeneous stock (HS) rats, we have identified a region on rat chromosome 1 that maps multiple diabetic traits. We sought to use global expression analysis to determine if genes within this region are differentially expressed between HS rats with normal glucose tolerance and those with glucose intolerance HS rats were euthanized at 17 weeks of age and tail sample was taken. Genomic DNA was extracted from tail of 23 HS rats with glucose intolerance and 23 HS rats with normal glucose. The Affymetrix 10K SNP array was used to genotype these animals.
Project description:Using heterogeneous stock (HS) rats, we have identified a region on rat chromosome 1 that maps multiple diabetic traits. We sought to use global expression analysis to determine if genes within this region are differentially expressed between HS rats with normal glucose tolerance and those with glucose intolerance HS rats were euthanized at 17 weeks of age and liver was immediately frozen in liquid nitrogen. RNA was extracted from liver of 23 HS rats with glucose intolerance and 23 HS rats with normal glucose. The Affymetrix 230_2 array was used to probe transcript abundance levels.
Project description:Research into the genetic influences of impulsivity and reward motivated behavior relies heavily on outbred animal populations, including Heterogeneous Stock (HS) rats, for the genetic diversity necessary to identify genotype-trait associations. Many such associations have been detected, but it is not always clear which gene or other feature near the identified genomic location is functionally responsible for the association. Since these traits are in part mediated by gene expression, mapping the associations between genotype and gene expression in these animals will enable the discovery and deeper understanding of these trait associations. We therefore obtained genotypes and RNA-Seq gene expression for five brain regions from 88 HS rats and mapped expression quantitative trait loci (eQTLs) for each region. We identified cis-eQTLs in over 3,000 genes per brain region and validated their effect sizes using allele specific expression. This resource will enable new discoveries of the genetic influences of complex behavioral traits.
Project description:Research into the genetic influences of impulsivity and reward motivated behavior relies heavily on outbred animal populations, including Heterogeneous Stock (HS) rats, for the genetic diversity necessary to identify genotype-trait associations. Many such associations have been detected, but it is not always clear which gene or other feature near the identified genomic location is functionally responsible for the association. Since these traits are in part mediated by gene expression, mapping the associations between genotype and gene expression in these animals will enable the discovery and deeper understanding of these trait associations. We therefore obtained genotypes and RNA-Seq gene expression for five brain regions from 88 HS rats and mapped expression quantitative trait loci (eQTLs) for each region. We identified cis-eQTLs in over 3,000 genes per brain region and validated their effect sizes using allele specific expression. This resource will enable new discoveries of the genetic influences of complex behavioral traits.
Project description:Research into the genetic influences of impulsivity and reward motivated behavior relies heavily on outbred animal populations, including Heterogeneous Stock (HS) rats, for the genetic diversity necessary to identify genotype-trait associations. Many such associations have been detected, but it is not always clear which gene or other feature near the identified genomic location is functionally responsible for the association. Since these traits are in part mediated by gene expression, mapping the associations between genotype and gene expression in these animals will enable the discovery and deeper understanding of these trait associations. We therefore obtained genotypes and RNA-Seq gene expression for five brain regions from 88 HS rats and mapped expression quantitative trait loci (eQTLs) for each region. We identified cis-eQTLs in over 3,000 genes per brain region and validated their effect sizes using allele specific expression. This resource will enable new discoveries of the genetic influences of complex behavioral traits.
Project description:Research into the genetic influences of impulsivity and reward motivated behavior relies heavily on outbred animal populations, including Heterogeneous Stock (HS) rats, for the genetic diversity necessary to identify genotype-trait associations. Many such associations have been detected, but it is not always clear which gene or other feature near the identified genomic location is functionally responsible for the association. Since these traits are in part mediated by gene expression, mapping the associations between genotype and gene expression in these animals will enable the discovery and deeper understanding of these trait associations. We therefore obtained genotypes and RNA-Seq gene expression for five brain regions from 88 HS rats and mapped expression quantitative trait loci (eQTLs) for each region. We identified cis-eQTLs in over 3,000 genes per brain region and validated their effect sizes using allele specific expression. This resource will enable new discoveries of the genetic influences of complex behavioral traits.