Project description:The Gayal (Bos frontalis) is a rare semi-domesticated cattle in China. Gayal has typical beef body shape and good meat production performance. Compared with other cattle species, it has the characteristics of tender meat and extremely low fat content. To explore the underlying mechanism responsible for the differences of meat quality between different breeds, the longissimus dorsi muscle (LM) from Gayal and Banna cattle (Bos taurus) were investigated using transcriptome analysis. The gene expression profiling identified 638 differentially expressed genes (DEGs) between LM muscles from Gayal and Banna cattle. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the PPAR signaling pathway, lipid metabolism and amino acid metabolism pathway. Protein-protein interaction(PPI) network analysis showed APOB, CYP7A1, THBS2, ITGAV, IGFBP1 and IGF2R may have great impact on meat quality characteristics of Gayal. Moreover, three transcription factors, FOXA2, NEUROG2, and RUNX1, which may affect meat quality by regulating the expression of genes related to muscle growth and development have also been found. In summary, our research reveals the molecular mechanisms that cause Gayal meat quality characteristics. It will contribute to improving meat quality of cattle through molecular breeding.
Project description:Whole genome re-sequencing of Gayal (Bos frontalis) and genome annotation to unveil genetic variations to explore the evolution and adaptation at genome level
Project description:Muscle transcriptome signature and gene regulatory network in two divergent lines of a semi-domesticated bovine Mithun (Bos frontalis) from India
Project description:The mammalian major histocompatibility complex (MHC) plays important roles in pathogen recognition and disease resistance. In the present study, the coding sequence and the 5'- and 3'-untranslated regions of MHC class II DR alpha chain (the DRA gene) from rare gayal and gaytle were cloned and analyzed to dissect structural and functional variations. The nucleotide and amino acid sequences for the DRA genes in gayal (Bofr-DRA) and gaytle (Bofr × BoLA-DRA) were almost identical to those for cattle and yak (99%). Compared to yak, two amino acids substitutions in the signal peptide (SP) domain for gayal were found within all Bos animals. Except for only one replacement in the amino acid within the ?2 domain of the DRA protein in gayal, the additional residues were highly conserved across the species investigated. The 20 peptide-binding sites (PBS) of Bofr-DRA and Bofr × BoLA-DRA were essentially reserved in the ?1 domain among all species investigated. The lesser degree of substitution in Bofr-DRA is concordant with the concept that the DRA gene is highly conserved among all mammals. The very high degree of conservativity of the DRA gene among ruminants, including gayal, suggests its recent evolutionary separation.