Project description:Most of our current knowledge about the molecular events ruling plant-virus interaction come from studies focusing on vascular plants. We here characterized the molecular, cellular and physiological events goberning plant-virus interactions in the non-vascular liverwort Marchantia polymorpha.
Project description:In order to elucidate the role of the single Marchantia B-GATA ortholog in response to high light intensities, a transcriptomic analysis of Marchantia polymorpha BoGa, Mpb-gata1 mutants and MpB-GATA1ox under high-ligh stress conditions was performed.
Project description:In the present study, Marchantia polymorpha Mppcs loss of function mutants were generated through CRISPR/cas9 mediated genome-editing. To assess whether the knockout of MpPCS gene affects the transcription of M. polymorpha nuclear genes in unstressed condition, the Mppcs-2 knockout mutant and Cam2 wild-type transcriptomes were compared by RNA-Seq.
Project description:Transcriptional profiling of Marchantia polymorpha Takaragaike-1 wild-type genotype, in samples from intact plants (NW, non-wounded) and from wounded plants, both in locally damaged tissue (W, wounded) and in systemic non-wounded tissues of the damaged plants (SD, systemic tissues of damaged plants)
Project description:To understand a role of MpMET in maintenance of cytpsine methylation and transposon silencing, we obtained a genome wide profile of 5-methylated cytosine from the Mpmet mutant of a model liverwort, Marchantia polymorpha.
Project description:RNA-seq of Marchantia polymorpha Mpb-gata1 mutants was performed in order to investigate their molecular signature of gene expression changes.
Project description:JAZ genes are negative regulators of jasmonate responses with a dual function as repressors of transcription factors and co-receptors, together with COI1, of the hormone jasmonoyl-isoleucine (JA-Ile). This family has been mainly studied in angiosperms, where high gene redundancy hinders the characterization of a complete depletion of JAZ function. Moreover, the recent discovery that JA-Ile is not the sole COI1/JAZ ligand in land plants, as dn-OPDA is the bioactive ligand in Marchantia polymorpha, underscores the importance of studying JAZ co-receptors in bryophytes. Here we exploited the low gene redundancy of the liverwort Marchantia polymorpha to characterize the function of the single MpJAZ in this early-divergent plant lineage. We demonstrate that MpJAZ is the ortholog of AtJAZ and acts as a repressor of dinor-OPDA responses in Marchantia. Mpjaz mutants show a dwarf phenotype and severe developmental defects related to growth inhibition, consistent with a constitutive activation of the dinor-OPDA pathway and the overaccumulation of both dinor-OPDA and its precursor OPDA. The expression of AtJAZ3 in Mpjaz complements MpJAZ repressor function, indicating that JAZ function is conserved across land plants. However, AtJAZ3 is unable to form co-receptor complexes with MpCOI1 and dn-OPDA, which evidences that the Jas domain, and not only COI1, determines ligand specificity.