Project description:Small RNA libraries were constructed from total RNA from Jasminum sambac plants exhibiting virus-like symptoms. After sequencing, small RNAs were assembled into contigs with MetaVelvet and assembled contigs were aligned against the NR database of NCBI using BLASTx. Top hits that reported a virus as subject were considered putative viral sequences. Based on such alignments, the whole genome of a virus, we tentatively name Jasmine Virus H was recovered and cloned. Two more small RNA libraries were made in a confirmatory experiment. One from Jasminum sambac and another one from Nicotiana benthamiana plants infected with the newly-cloned virus. The small RNA libraries were aligned against the full-length sequence of Jasmine Virus H to determine the spacial distribution of virus-derived small RNAs along the virus genome.
Project description:The purpose of this clinical research is to establish a multi-omics model based on genomics,transcriptomics,gut microbiota in predicting pathologic response after neoadjuvant chemoradiotherapy combined PD-1 antibody given to patients with locally advanced rectal cancer.
Project description:Brown planthopper (BPH; Nilaparvata lugens) is a phloem feeding insect which is one of the most serious threats to rice crops in many countries throughout Asia. 1H NMR spectroscopy, combined with chemometrics, was used to analyze the polar metabolome from leaf extracts of Thai Jasmine rice (brown planthopper (BPH)-susceptible KD) and its BPH resistant isogenic lines (BPH-resistant IL7 and BPH-resistant+ IL308 varieties) with and without BPH infestation at various time points (days 1, 2, 3, 4 and 8). Physiological changes of the rice isogenic lines were different based on the quantitative trait loci of BPH resistance. Multivariate models were capable of distinguishing between the susceptible and the resistant rice varieties throughout the infestation. The concentration of 10 metabolites were significantly altered (p < 0.05) between the infested and the control groups of each examined rice variety. Metabolic pathway analysis suggested that BPH infestation could perturb transamination during the early stages of infestation (days 1–3) for all rice varieties. In addition, the IL7 and IL308 varieties responded earlier (day 3) than the KD variety (day 8) by perturbing amino acid metabolism, shikimate and gluconeogenesis pathways. By day 8 of the infestation, the KD cultivar responded by activating the amino acid-mediated-de novo pathway whereas the IL308 variety activated the purine and pyrimidine compound-mediated-salvage pathway for nucleotide biosynthesis. This study has identified, for the first time, several potential metabolic pathways for acclimatization and defense mechanisms against BPH infestation. These findings provide a valuable, first insight into BPH resistance mechanisms in Thai Jasmine rice.
Project description:Transcriptomics and phosphoproteomics were carried out in B6.Cg-Mapttm1(EGFP)Klt (mapt knockout: tau-KO) and wild-type (WT) 12-month-old mice to learn about the effects of tau ablation.